Vacancies
Academic postions
Currently no vacancies available
Postdoctoral postions
Research Associate |
|||
Job Purpose
To make a leading contribution to the project ‘MOT4Rivers- monitoring, modelling and mitigating pollution impacts in a changing world’ working with Profs Scott, Miller, Dr O’Donnell for work package 2- national scale impacts, UK Centre for Ecology & Hydrology and the wider project team.
For centuries, human activities have impacted our rivers by shifting the sources and combinations of physical, biological and chemical drivers and pressures. However, our understanding of their impact on ecosystems has been limited by viewing each in isolation and not considering their combined effects. Our freshwater species are being challenged by a bewildering combination of pollutant cocktails (mixtures) whose effects are poorly understood. At the same time, climate-change driven shifts in water quantity (more frequent floods, longer periods of low flow) and warming waters are expected. Our wastewater systems and combined sewer overflows transport pollutants from our cities and towns into our freshwater environment.
Substantial knowledge gaps remain around the effects of hydro-climatic and land use changes in combination with the different mixtures of chemicals on freshwater species. In this project, we will use national scale datasets and cutting edge data analytics tools to investigate the impacts of longer-term exposure to pollutant cocktails across the UK on water quality and ecosystem health. This will provide new understanding of chronic/long term impacts on freshwater ecosystems. Our research will develop the evidence base to understand changing pollutant sources, delivery pathways and the environmental tolerances and boundaries within which organisms can thrive and flourish (i.e. the ecosystem safe space).
The successful candidate will also be expected to contribute to the formulation and submission of research publications and research proposals as well as help manage and direct this complex and challenging project as opportunities allow.
Closing date - 9 March 2023
For futher information please folowing the link below:
|
Professional, Administrative and Support opportunities
Currently no vacancies available
Funded Ph.D opportunities
Please see below
Stellar atmospheres and their magnetic helicity fluxes (PhD)
Supervisors: Simon Candelaresi, Radostin Simitev, David MacTaggart, Robert Teed
Relevant research groups: Continuum Mechanics - Fluid Dynamics and Magnetohydrodynamics
Our Sun and many other stars have a strong large-scale magnetic field with a characteristic time variation. We know that this field is being generated via a dynamo mechanism driven by the turbulent convective motions inside the stars. The magnetic helicity, a quantifier of the field’s topology, is and essential ingredient in this process. In turbulent environments it is responsible for the inverse cascade that leads to the large-scale field, while the build up of its small-scale component can quench the dynamo.
In this project, the student will study the effects of magnetic helicity fluxes that happen below the stellar surface (photosphere), within the stellar atmosphere (chromosphere and corona) and between these two layers. This will be done using two-dimensional mean field simulations that allow parameter studies for different physical parameters. A fully three-dimensional model of a convective stellar wedge will then be used to provide a more detailed picture of the helicity fluxes and their effect on the dynamo. Using recent advancements that allow us to extract surface helicity fluxes from solar observations, the student will make use of observations to verify the simulation results. Other recent observational results on the stellar magnetic helicity will be used to benchmark the findings.
Statistical methodology for Assessing the impacts of offshore renewable developments on marine wildlife (PhD)
Supervisors: Janine Illian
Relevant research groups: Statistics and Data Analytics
(jointly supervised by Esther Jones and Adam Butler, BIOSS)
Assessing the impacts of offshore renewable developments on marine wildlife is a critical component of the consenting process. A NERC-funded project, ECOWINGS, will provide a step-change in analysing predator-prey dynamics in the marine environment, collecting data across trophic levels against a backdrop of developing wind farms and climate change. Aerial survey and GPS data from multiple species of seabirds will be collected contemporaneously alongside prey data available over the whole water column from an automated surface vehicle and underwater drone.
These methods of data collection will generate 3D space and time profiles of predators and prey, creating a rich source of information and enormous potential for modelling and interrogation. The data present a unique opportunity for experimental design across a dynamic and changing marine ecosystem, which is heavily influenced by local and global anthropogenic activities. However, these data have complex intrinsic spatio-temporal properties, which are challenging to analyse. Significant statistical methods development could be achieved using this system as a case study, contributing to the scientific knowledge base not only in offshore renewables but more generally in the many circumstances where patchy ecological spatio-temporal data are available.
This PhD project will develop spatio-temporal modelling methodology that will allow user to anaylse these exciting - and complex - data sets and help inform our knowledge on the impact of off-shore renewable on wildlife.