Dr Fani Deligianni
- Senior Lecturer (Computing Science)
email:
Fani.Deligianni@glasgow.ac.uk
pronouns:
She/her/hers
321b Sir Alwyn Williams Building, School of Computing Science, Glasgow University, G12 8RZ
Biography
Dr Fani Deligianni’s holds a PhD in Medical Image Computing (Imperial College London), an MSc in Advanced Computing (Imperial College London), an MSc in Neuroscience (University College London) and a MEng (equivalent) in Electrical and Computer Engineering (Aristotle University, Greece).
Her PhD work was on augmenting 3D reconstructed models of the bronchial tree with 2D video images acquired during bronchoscopy. Bronchial deformation was modelled based on Active Shape Models (ASM) and a predictive tracking algorithm was incorporated to improve tracking of the endoscopic camera.
She was awarded an MRC Special Research Training Fellowship in Biomedical Informatics to explore links between structural connectivity as it is measured with Diffusion Weighted Imaging (DWI) and functional brain connectivity captured with resting-state (rs)-fMRI. She was based at the Biomedical Image Analysis group in Computing Department of Imperial College London. Her research work suggests a prediction framework to study the link between structural brain connectivity and functional brain connectivity.
She developed sophisticate computational approaches in machine learning, statistics and network analysis for the investigation of human brain structure and function. She applied her approach in functional data derived from simultaneous resting-state EEG-fMRI and microstructural indices obtained from neurite orientation dispersion and density imaging of the human brain. In particular, she uses graph theory, machine learning and statistics to describe and characterise complex interconnections between multi-modal brain networks.
Recently, her work is focused on human motion analysis with wearable sensors and single rgb(d) camera for healthcare applications. Towards this direction, she has received competitive funding from EPSRC and the Royal Society.
Research interests
She is part of the Information, Data & Analysis Section (IDA) section.
I am a member of the Computing Technologies for Healthcare theme at the School of Computing Science. I am also coordinating the GWiCS - Glasgow Women in Computing group.
My interests include:
- Medical image computing
- Statistical machine learning,
- Human Motion Analysis with wearable sensors
- Neuroimage analysis and neuroscience
- Brain Connectivity
- Human Machine Interaction
- Healthcare Informatics
For more information visit:
New/Events:
- Workshop on 'AI in Pervasive Well-Being and Healthy Ageing' on 29th of June at Advanced Research Centre, University of Glasgow.
- Our paper on 'Optimizing Vision Transformers for Medical Image Segmentation' has been accepted to IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2023).
PhD/EngD Students:
- Tahani Aladwani (co-supervise with Christos Anagnostopoulos)
- Fransesco Dala Serra (co-supervise with Alison ONeil/Canon Medical and Jeff Dalton, PI)
- Long Qianyu (co-supervise with Christos Anagnostopoulos)
- Fatima Ghanduri (co-supervise with Christos Anagnostopoulos)
- Narinder Kaur (co-supervise with Pierpaolo Pelicori, John Cleland)
- Muhammet Alkan (co-supervise with Ke Yuan, PI)
- Nicole Lai (co-supervise with Marios Philiastides, PI)
- Dominik Szczepaniak (co-supervise with Monika Harvey, PI)
- Samuel Leighton (co-supervise with Jonathan Cavanagh, Rajeev Krishnadas)
- Qianying Liu (co-supervise with Christos Anagnostopoulos, PI)
- Kaushik Bhargav Sivangi (co-supervise with Paul Henderson, PI)
RAs/Honorary RAs:
- Idris Zakariyya
- Xiao Gu
Alumni:
- Hester Huijsdens
- Mingcan Tang
- Yola Jones
Funding and Collaborations:
- NHS Lanarkshire on 'A Technology-driven Preventive Approach to Frailty and Falls', supported by a fellowship.
- NHS Golden Jubilee on 'Machine Learning Models for Risk Prediction in Congenital Heart Disease'.
- EPSRC New Investigator Award on 'Privacy-Preserved Human Motion Analysis for Healthcare Applications', 2022-2025, PI. F. Deligianni
- Royal Society Semiflex grant on Human Motion and Privacy for Radar/Quantum Technology, 2022-2023, PI. F. Deligianni
- UKRI CDT on Socially Intelligent Artificial Agents with three PhD Scholarships
- Coursera course on Deep Learning for Clinical Decision Systems based on EHR, 2020-2021, PI. F. Deligianni
- 2021 Summer Scholarship, School of Computing Science, University of Glasgow (Matthew Malek-Podjaski)
- Human Data Interaction EPSRC Network - Human Motion Analysis – Agency, Negotiation and Legibility in Data Handling (EPSRC EPR0451781), PI Dr. Fani Deligianni, 2020-2021.
- Waire Health - Medical graded wearable sensing devices.
- CogniHealth is a healthcare technology company, which support people with dementia and their families.
- CanonMedical with funding for an EngD student via the CDT on Photonics.
Distinguished Students' Projects:
- Deep Learning Models for Classification of Real and Synthetic Human Motion, Kiril Mitkov Bikov, 2023.
- Imputation Strategies for Risk Prediction Models Based on Electronic Health Records, Lee Lok Hang Toby, 2021-2022.
- Development of Machine Learning Models to Detect Arrhythmia based on ECG data - Explainable Models, Hector J. Jones, 2021-2022.
- Improving Explainability Using Expected Gradients for ECG Beat Classification, Anuraj Taya, 2021-2022.
- Adversarial Attention for Human Motion Synthesis, Matthew Malek-Podjaski, MSci, 2021-2022.
- Machine Learning Applications for the Detection and Disentanglement of Emotional States in Human Motion, 2020-2021, Matthew Malek-Podjaski. (This project is linked to Explainable, Privacy-Preserved Human Motion Analysis)
- Development of Machine Learning Models to Detect Arrhythmia Based on ECG Data-Interpretability, 2020-2021, Shourya Verma.
Teaching:
Informed Clinical Decision Making using Deep Learning: Students can enroll to the coursera MOOC here.
- Data Mining of Clinical Databases
- Deep Learning in Electronic Health Records
- Explainable Deep Learning Models for Healthcare
- Clinical Decision Support Systems
PhD/Post-doc Vacancies:
I am looking for highly motivated and competitive PhD/postdoctoral candidates to work in developing trustworthy AI systems in healthcare and human motion analysis. If you are interested drop me an email with your CV at fani.deligianni@glasgow.ac.uk).
Supervision
- Aladwani, Tahani
Diagnosis of Diseases as Cloud Computing Service (DoDaaS) - Chaichakan, Tanatta
Weakly-supervised learning for medical image understanding - Ghanduri, Fatima H M
Predictive Intelligence of Interpretable Models in the Financial Domain - Kaur, Narinder
- Liu, Qianying
Deep Learning for Health Informatics - Long, Qianyu
Distributed Statistical Learning over Data Streams at the Network Edge - Nguyen, Thuy Trinh
Multimodal Machine Learning in Medical Screenings - Sivangi, Kaushik Bhargav
Human Motion Analysis for Healthcare Applications - Szczepaniak, Dominik
Evaluating and Shaping Cognitive Training with Artificial Intelligence Agents
Teaching
- Object Oriented Software Engineering (2020-2021)
- Professional Software Development and Team Project (2020-2021)
- Computer Vision Methods and Applications (2022-2023)
- Machine Learning and Artificial Intelligence (2021-2023)
Professional activities & recognition
Prizes, awards & distinctions
- 2019: Best Paper Award (IEEE 19th International Conference on Bioinformatics and Bioengineering)
- 2020: Best Paper Award in Bioengineering (IEEE 20th International Conference on Bioinformatics and Bioengineering)
- 2021: Best Runner Up Award - IEEE Brain (IEEE Symposium Series on Computational Intelligence)
Research fellowships
- 2008 - 2011: MRC Training Fellow
Editorial boards
- 2018 - 2018: Hamlyn Symposium on Medical Robotics
- 2018 - 2018: Workshop on BCI and Human AI augmentation - HSMR
- 2019 - 2019: Hamlyn Symposium on Medical Robotics
- 2019 - 2019: Workshop on BCI and Human AI augmentation - HSMR
- 2021 - 2021: Computational Intelligence for Brain Computer Interfaces at IEEE SSCI
- 2022 - 2022: IEEE Engineering in Medicine and Biology Society - Novel Sensing and Applications
- 2022 - 2022: IEEE 8th World Forum on Internet of Things (WF-IoT)
- 2022 - 2022: Computational Intelligence for Brain Computer Interfaces at IEEE SSCI
- 2022 - 2023: IEEE Transactions on Neural Systems and Rehabilitation Engineering
- 2023 - 2023: IEEE Engineering in Medicine and Biology Society - Novel Sensing and Applications
- 2023 - 2023: Royal Society Open Science