Postgraduate research 

Geology PhD/MSc (Research)/MPhil (Research)

Cracked soil in water

Self funded opportunities

PhD

+++

Tracking the evolution of C-complex asteroids using carbonates

Supervisor: Prof Martin LeeDr Luke DalyDr John MacDonald (john.macdonald.3@glasgow.ac.uk)

Aim

This project will develop a new and detailed understanding of the evolution of C-complex asteroids through the analysis of carbonate minerals using state of the art geochemical and mineralogical techniques. Specifically, the project will use Ca- Mg- and Fe-rich carbonates in the CI and CM carbonaceous chondrite meteorites (calcite, dolomite, siderite, magnesite) to track the evolution of the temperature, and chemical and isotopic composition of pore fluids during the first few million years of solar system history. Results will be highly applicable to interpreting results from ongoing missions to the asteroids Bennu and Ryugu.

Rationale

Understanding the evolution of C-type asteroids is important as they are likely to be a significant contributor to the volatile budget of the Earth. Soon after their accretion within the
protoplanetary disk, C-complex asteroids were heated sufficiently to melt water ice (Fujiya et al., 2012). Interaction of this water with co-accreted minerals and glasses produced a suite of secondary minerals including phyllosilicates, sulphides and carbonates. Although they are a volumetrically minor component, the carbonates can provide detailed information on the nature and evolution of the parent body fluids, including their chemical composition, temperature, pH and Eh, which can itself reveal the length scale and longevity of the aqueous system (Guo and Eiler 2007; Lee et al., 2014). In addition to conventional analytical tools, this project proposes to use the evolving technique of atom probe tomography (APT), which has recently been shown to yield unique insights into the nanoscale chemical and isotopic compositions of carbonate minerals in the carbonaceous chondrite meteorites (Daly et al., 2018).

Methods

The meteorite samples will be studied using conventional scanning electron microscopy techniques to locate, petrographically characterise and chemically analyse the carbonates. Data on their carbon and oxygen isotopic compositions will be available from work ongoing at the Scottish Universities Environmental Research Centre, and new analyses for the project using nanoSIMS. APT will be undertaken in the UK (Oxford University), or at partner organisations in Australia (Sydney and Curtin universities).

Knowledge background of the student

The project is suitable for a graduate with a good honours degree in Geology or Earth Science with an interest in Planetary Science.

Career prospects

This project will equip the student with skills in planetary science, mineralogy and geochemistry, which could lead to employment in areas such as resource exploration, environmental management and space science.

References

Contact the principal supervisor with any questions: Martin.Lee@Glasgow.ac.uk

---

MSc by Research

+++

Cement Waste Carbonation for Carbon Capture (Dr John MacDonald)

Supervisor: (john.macdonald.3@glasgow.ac.uk)

Aim

This project will investigate the natural capture of carbon dioxide by a legacy cement waste heap.

Rationale of the project

Cement manufacture involves smelting raw materials (predominantly limestone and clay) in a furnace at ~2000 °C which produces gravel- to cobble-sized cement clinker, which is subsequently ground up to become cement powder. Some clinker may be discarded for quality-control reasons and has historically been dumped in heaps around cement works. The clinker is composed of highly reactive minerals (this is what gives cement its desired properties), which are far from equilibrium in the natural environment and, similar to other industrial smelting products like steel slag, react with atmospheric CO2 to precipitate calcium carbonate (calcite). This reaction, which draws down atmospheric CO2, merits further investigation as it may present an opportunity to limit or reduce atmospheric CO2 concentrations which are increasing global temperatures. In order to address the feasibility of this, various questions need to be addressed such as how much CO2 could waste cement clinker sequester, and what are the mechanics of the calcite precipitation.

Methods

Samples of cement clinker have been collected from a former cement works near Wishaw in Scotland. A small cliff section through a bank of partially ground discarded clinker shows irregular layering and a range of textures. Photography and logging of this cliff will provide context to subsequent petrographic and XRD analysis to determine the mineralogy. µCT analysis will be conducted on samples to determine the spatial distribution and volume of calcite which has precipitated on the clinker.

Knowledge background of the student

The student should have a geoscience or chemistry background with a strong interest in climate change and its mitigation. Laboratory experience is desirable and a willingness to learn new techniques in a laboratory environment is vital. A competent ability in scientific writing, gained through an undergraduate mapping or research project, is expected.

Career prospects

This MSc by Research project will give the student experience in advanced SEM techniques and familiarity with industrial residues and the opportunities they present. These skills will equip them for further research through a PhD or a career in a discipline relevant to climate change or environmental management.

Figure 1. Section through a waste cement deposit (left) and a close-up of calcite precipitated on the cement clinker (right).

Interested applicants should contact Dr. John MacDonald at: John.MacDonald.3@glasgow.ac.uk

---

+++

Evolution of the western Carboniferous Midland Valley Basin, Scotland (Dr Cristina Persano)

Supervisors: Dr Cristina Persano, Dr Amanda Owen, Dr Iain Neill

Project aim:

The aim of this project is to quantitatively reconstruct the source of Carboniferous sediments in the western portion of the Midland Valley and constrain the basin’s thermal evolution since its deposition. Data from this area will be integrated into a wider project based at the University of Glasgow to better understand the Carboniferous Midland Valley and its potential as an unconventional resource basin, including oil and geothermal energy.

Project rationale:

To date, the Carboniferous of the Midland Valley of Scotland has received considerably less attention than its Devonian counterpart. Carboniferous sedimentation and associated volcanism occurred in response to crustal extension, and the nature and source of sedimentary materials represents a delicate balance between tectonic processes operating both locally and across NW Europe, and sea level change. The Midland Valley has provided important sources of coal, aggregate and limestone which fuelled Scotland’s industrial revolution, and is today the source of much interest for low-enthalpy geoenergy resources close to our main towns and cities (eg.Potential for deep geothermal energy in Scotland).

Although a stratigraphic framework is in place, detailed sedimentological and geochronological data is generally lacking due to urbanisation and a lack of outcrops being present in the central portion of the Midland Valley leading to gaps in knowledge. However, access to unique core from drilling associated with the Dalmarnock UK Geoenergy Observatories programme will shed light onto this economically significant basin through new geochronological and sedimentological studies.

In this project, quantified facies mapping techniques, zircon U-Pb dating and apatite fission track analyses will help understand fundamental scientific questions of the Scottish Carboniferous: whether a dominantly axial or transverse sediment routing system was present, the key source areas for sediment supply, and the post-depositional thermal history. Our group have already commenced work on the eastern Midland Valley, but for the first time we have an opportunity to continue this work in the western part of the basin. All aspects of these questions are critically important for this basin due to its economic significance as it is currently being explored to assess its viability as a geothermal resource. The approaches taken within this study will not only serve to answer questions specific to this basin but also serve as a methodological approach to resource (i.e. coal, shale gas, geothermal) identification, reservoir connectivity, and prediction of the best targets for exploitation in other under-utilized basins across the world.

Methods

The work is organized into two parts which interact and feedback on each other. The rock core will be fully logged by the student, its sedimentary characteristics and structures will then be used to quantitatively characterise facies to generate robust palaeogeographic interpretations. The portions of the sedimentary core allotted to Glasgow will undergo extensive petrographic investigations, and those, coupled with the logs, will guide a sampling strategy for the recovery of zircon and apatite grains. Apatites will undergo U-Pb dating and fission track analysis at the University of Glasgow, whilst entire zircon populations will undergo U-Pb dating and trace element analysis using laser ablation mass spectrometry, again at the University of Glasgow. The U-Pb ages will provide insights onto the provenance of the sediments, whereas the fission track data will constrain the thermal evolution of the basin.

The student will then integrate the different datasets in combination with regional data to produce a paleogeographic model for the western portion of the Carboniferous Midland Valley, which will then be integrated into ongoing work in our group to build a robust understanding of the origins and thermal history of this economically significant sedimentary basin.

Please note that there is a £1000 programme cost due from the student. This cost partially covers the student’s expenses to visit Nottingham for core sampling, for laboratory preparation, sample analysis, and subsequent conference/workshop presentations.

Knowledge background of the student

You must have a 2:1 in a relevant Geoscience degree. You must be enthusiastic about working in a laboratory and attentive to the Health and Safety procedures. You must be able to work independently, effectively managing your project, but also be part of the research team and work alongside other lab users, including postgraduate students and research fellows, in a vibrant, international environment.

Career prospects

Due to the multidisciplinary aspects to this project the chosen student will gain a host of skills. Research based skills including scientific writing, presentation (poster and oral) and outreach skills will be gained as part of this project. Scientific skills include training in logging of sedimentary core, quantitative facies analyses, U/Pb analysis of zircons and apatite fission track analyses, involving training in sample preparation and laser ablation mass spectrometry. Such skill sets are relevant for a future career in both industry (such as geothermal, oil and gas and mining) and academia (PhD programmes).

You will be eligible to attend a range of study- and career-enhancing workshops as part of their postgraduate training at the University of Glasgow.

---

+++

Quantifying the mineralogical controls on precious metal enrichment in the Rum layered intrusion, NW Scotland (Dr Joshua F Einsle)

Supervisors: Dr Joshua F Einsle, Dr John Faithfull, Dr Brian O’Driscoll (University of Manchester), and Dr Daniel Lonsdale (LIG Nanowise)

Project aim:

The Rum layered mafic intrusion (NW Scotland) provides an excellent opportunity for studying the processes by which platinum group metals (PGM) are mobilised and enriched during precious metal ore formation. Connecting the magmatic processes that operated in the Rum body with other economically significant layered intrusions relies on being able to quantitatively contextualise multiscale data to reveal the full complexity of the PGM mineral assemblage and distribution.  By combining advanced microscopy and microanalysis techniques with machine learning tools, this project will provide a statistically quantitative approach to understanding the PGM mineralisation in the Rum intrusion.  Working from the field and hand sample scales down to the grain scale, this project will look to correlate optical information (sub-micrometre optical microscopy and Raman mapping) with electron beam microanalysis to develop an efficient workflow for locating and describing nanoscale PGM grains in samples, while simultaneously preserving large scale context. This should result in a flexible tools set suitable for studying other energy critical element orebodies.

Project rationale:

Platinum group metals (PGM) are of increasing global importance due to their role in the automotive and electronics industries.  This demand drives a need to not only understand existing resources but investigate methods for enhanced recovery of PGM from previously extracted ore; a prospect whose economic viability depends on metal price(s). Interestingly, most of these reserves are associated with layered igneous intrusions, where chromite layers are enriched in PGM.

This project will leverage the strong lithological and structural similarities between the Rum Layered Suite and the world’s most productive PGM resource (the Bushveld Complex, South Africa) to help develop a holistic model for PGM enrichment in chromite more generally. As Rum is considerably younger and smaller, it should preserve valuable primary magmatic (chemical, textural) signatures which are not present in the Bushveld body. This makes Rum a valuable locality to examine PGM distribution and develop new approaches to the quantitative characterisation of the phases that control the distribution of the metals.  Previous efforts to map out these features using quantitative automated mineralogy tools on the electron microscope have been limited by the trade-off between automation throughput versus spatial resolution1.

This project looks to apply correlative approaches using optical and electron microscopy combined with machine learning to produce statistically robust datasets describing the diversity and distribution of the mineral phases of interest. The advanced statistical approach to the correlative methods developed in this project will be generalisable for localising and identifying of other rare element grains in a range of geological settings.

Methods

This project will involve the student working on materials from the Isle of Rum. This can focus entirely on archived samples (e.g. materials in the Hunterian and previously collected materials) or fieldwork can be organised for acquiring fresh specimens. In order to understand the PGM enrichment process, the petrography, mineralogy and chemical composition of thin sections samples will be characterised by developing a correlative workflow moving from hand specimen to thin section (optical microscopy) and then onto the scanning electron scope utilizing x-ray energy dispersive spectroscopy (EDS; at the University of Glasgow).

Analysing the EDS maps with open source machine learning tools2,3 will produce quantitative phase maps which can be explored for both PGM phases as well as textural relationships revealed through the phase maps. These statistically derived mineral phase relationships will be used to derive statistically robust datasets based on the full range of grain sizes down to the nanoscale which are connected across multiple thin sections.

Further, the data driven localisation of PGM grains will be used to inform optical inspection techniques (leveraging advanced nanooptics developed by LIG Nanowise) and look at developing an efficient process for inverting this workflow. There is also scope to explore applications of electron backscatter diffraction and/or x-ray tomography in understanding PGM enrichment growth processes. We envisage that the workflows and analytical methods developed here will be redeployable across a broad range of geological applications in petrology, mineralogy and beyond.

Knowledge background of the student

The student should have a background in geosciences, computer and or data science, or the physical sciences. Laboratory experience is desirable although not essential but a willingness to learn new techniques in a laboratory environment is vital. The student will become familiar with scanning electron microscope, energy dispersive spectroscopy, nanooptics and data science methods. A competent ability in scientific writing, gained through an undergraduate mapping or research project, is expected.

Career prospects

This project will equip the student with skills in mineralogy, microscopy and microanalysis as well as data science techniques. This could lead to several possible roles in the microscopy industry, materials science, data science and the mineral resource/extractive industries or a PhD position. Partnership with LIG Nanowise will provide industrial experience for the student and provide useful insight into differences between commercial and research approaches.

References
  1. O’Driscoll, B., Butcher, A. R. & Latypov, R. New insights into precious metal enrichment on the Isle of Rum, Scotland. Geol. Today 30, 134–141 (2014).
  2. Einsle, J. F. et al. All Mixed Up: Using Machine Learning to Address Heterogeneity in (Natural) Materials. Microsc. Microanal.24, 562–563 (2018)
  3. Peña, F. de la et al. HyperSpy 1.1.2. (2017). doi:10.5281/ZENODO.240660

---

+++

Data driven approaches for unmixing meteoritic magnetic mineralogy (Dr Joshua F Einsle

Supervisors: Dr Joshua F. Einsle, , Dr Ian MacLaren (School of Physics & Astronomy), Dr Alex Eggeman (Manchester)

Project aim:

The proposed project will leverage big data techniques to analyse complex crystallographic and chemical data of magnetic minerals from iron-nickel meteorites.  The magnetic properties of the ‘cloudy zone’, a nanoscale iron-nickel intergrowth, are of interest since it both records the magnetic history of the proto-planet (planetesimal) where the. Application of data deconvolution techniques like clustering have revealed a complex chemical and crystallographic environment.

The project will look at testing these results by examining the composition and crystallography from a series of iron-nickel meteorites displaying different cooling histories.  By mapping out the microstructures throughout the thermodynamic phase space, it will be possible to better constrain planetesimal cooling rates and develop a better understanding for the low-temperature synthesis of these Fe-Ni alloys.

Project rationale:

Rare-earth permanent magnets play a critical role in green technologies such as wind turbines and electric vehicles1–4.  These elements are mainly sourced from a limited number of countries, many of which suffer from complex political situations. A desire for secure and ethical materials drives a strong global interest in developing low cost alternatives for permanent magnetic materials. 

Recently, Goto et al5 have developed a low-temperature laboratory based method for the synthesis of the ordered iron-nickel alloy, tetrataenite.  This alloy naturally forms of years allows for diffusion to form a nanoscale intergrowth called the cloudy zone 6,7. The finest region of the cloudy zone possesses a high magnetic coercively due to the 50 nm (or less) particles of tetrataenite being magnetically aligned and surrounded by a different ordered Fe-Ni alloy matrix. These properties provide a natural analogue to rare-earth permanent magnet materials.

The synthetic process above can only be optimised through a better understanding of the low temperature phase space recorded in the cloudy zone microstructures of meteorites with different cooling rates. These experiments will build on the recently reported data driven approaches for examining these nanoscale mineral phases but extend them in two critical methods7. Using the direct electron detector on the MagTEM microscope in the Kelvin Centre for Nanotechnology (KNC)-Glasgow we will be able to undertake high-resolution electron diffraction experiments exploring the chemical ordering in the matrix. Additionally, Lorentz mode convergent beam diffraction patterns allow for the mapping of sample magnetization.

Further, there is scope to extend the analytical techniques at KNC, by correlating measurements with the atomic resolution elemental mapping available at SuperSTEM. Using the correlative microanalysis tools, all three data sets can be overlaid and analysed in parallel to understand how chemistry and crystal structure in the two phases produce the magnetic behaviour of the cloudy zone. This will extend the correlative microanalysis framework by incorporating functional properties of the material studied.

Methods

The cloudy zone of Fe-Ni meteorites consists of two similar cubic crystal structures with similar chemical compositions. As such data deconvolution approaches have been critical to understanding how these two phases formed as the parent body cooled.  This project will focus on developing correlative data science approaches for examining spectroscopic and crystallographic data in parallel allowing covariance in data sets to be revealed. Studies will be conducted on archived meteorite samples. The collection of new data sets will be facilitated training in electron microscopy techniques. Then analysis will be performed using open source Python based packages, such as Hyperspy, and Scikit-learn.

Knowledge background of the student

The student should have a background in geosciences, computer and or data science, or the physical sciences. Laboratory experience is desirable although not essential but a willingness to learn new techniques in a laboratory environment is vital. The student will become familiar with electron microscopy and microanalysis (both crystallographic and spectroscopic techniques). The focus will be on the application and further development of data science approaches to the analysis of microanalytical data. A competent ability in scientific writing, gained through an undergraduate mapping or research project, is expected.

Career prospects

This project will equip the student with skills in mineralogy, microscopy and microanalysis as well as data science techniques. This could lead to several possible roles in the materials science (including renewable technologies) and microscopy fields, as well as space exploration, data science and the mineral resource/extractive industries or a PhD position.

References:
  1. Grandell, L. et al. Role of critical metals in the future markets of clean energy technologies. Renew. Energy 95, 53–62 (2016).
  2. Riba, J.-R., López-Torres, C., Romeral, L. & Garcia, A. Rare-earth-free propulsion motors for electric vehicles: A technology review. Renew. Sustain. Energy Rev. 57, 367–379 (2016).
  3. Widmer, J. D., Martin, R. & Kimiabeigi, M. Electric vehicle traction motors without rare earth magnets. Sustain. Mater. Technol. 3, 7–13 (2015).
  4. Lewis, L. H. et al. Inspired by nature: investigating tetrataenite for permanent magnet applications. J. Phys. Condens. Matter 26, 064213 (2014).
  5. Goto, S. et al. Synthesis of single-phase L10-FeNi magnet powder by nitrogen insertion and topotactic extraction. Sci. Rep. 7, 1–7 (2017).
  6. Bryson, J. F. J. et al. Long-lived magnetism from solidification-driven convection on the pallasite parent body. Nature 517, 472–475 (2015).
  7. Einsle, J. F. et al. Nanomagnetic properties of the meteorite cloudy zone. Proc. Natl. Acad. Sci. 115, (2018).

---

+++

Geological history of an unknown protoplanet: The Ureilite meteorites (Dr Luke Daly)

Supervisors: Dr Luke Daly, Prof Martin Lee

Project aim:

The Ureilite meteorites are an enigma as we do not know what parent planet they originated from. This project aims to determine the geological history of the Ureilite meteorites to aid in the search for their parent body/bodies.

Project rationale:

The Ureilite meteorites are an anomalous type of achondrite meteorite. They represent igneous rocks from a differentiated planetesimal, one that was large enough to separate into a core, mantle and crust, potentially as large as Mercury or Mars. There are however, no good candidates in our solar system for the source of the Ureilite meteorites and it is not clear that they come from the same body at all.

The Ureilite meteorites are interesting as they are rich in carbon that is concentrated in diamonds, that could have formed during intense shock metamorphism during planetary break up or during long-lived high pressure metamorphism in a planetary mantle. A comparative study of the petrography and deformation histories of these meteorites is vital to understand the formation evolution and destruction of planetesimals in our Solar System.

Methods

Urelite meteorites have been aquired from the Smithsonian Institute. The petrography, mineralogy and chemical composition of meteorite samples will be characterised by scanning electron microscopy techniques in particular electron backscatter diffraction to unpick their deformation history/histories derived from thermal and shock metamorphism.

Additional programme cost: £1,000

Knowledge background of the student

The project is suitable for a graduate with a good honours degree in geology, Earth science or materials science. Laboratory experience is desirable - particularly use of SEM - and a willingness to learn new techniques in a laboratory environment is vital. A competent ability in scientific writing, gained through an undergraduate mapping or research project, is expected.

Career prospects

This MSc by research project will equip the student with skills in mineralogy, crystallography and geochemistry. Additionally, this MSc by research project will give the student experience in advanced SEM techniques and handling big datasets. These skills could lead to employment in areas such as extractive industries or environmental management. There are also many opportunities for PhD research in planetary science in the UK and internationally.

---

+++

Bubbling Over – Computer Simulations of Lava Lake Convection (Tobias Keller)

Supervisor: Tobias Keller

Project aim:

You will characterise the dynamics of convection for active lava lakes around the world by means of custom-built computer simulations. The aim is to better understand the flow of lava driven by bubbles of volcanic gas through the plumbing system of persistently active volcanoes.

Project rationale:

Lava lakes provide a rare window into the plumbing system of volcanoes. A recent study  Lev et al., 2019, doi: 10.1016/j.jvolgeores.2019.04.010.] has synthesised observations on the handful of currently active lava lakes world-wide and found a correlation between the observed flux of volcanic gas through the lake surface and the speed of lava flowing along it. The observed flow regimes vary between slow, plate-like creep and fast, churning flow.

Our current understanding is that the mode of convection depends on the chemistry, and temperature of the lava, on the geometry of the lake bed and the conduit feeding into it, and on the flux of volcanic gas passed through the system. The gas derives from exsolution of volatiles deeper down in the conduit and forms bubbles entrained in the lava. However, the relative importance of each factor remains unclear. A recent modelling study [Birnbaum et al., preprint, arXiv.org: 1907.02899] has developed computer simulations that can help to unravel the internal dynamics of lava lakes. You will extend this promising approach to study all currently active lava lakes world-wide.

Methods

You will extend a custom-built multi-phase flow simulator to test how lava lake convection driven by buoyant bubbles of volcanic gas depends on factors including lava crystallinity as a function of its chemistry and temperature, the geometry of the lake bed and conduit, and the influx of gas from deeper down.

You will systematically test a range of model parameters and analyse the resulting output to find overarching trends and systematic flow regimes that help explain the internal dynamics of convecting lava lakes.

Finally, you will compare your findings to observational records of surface flow speed and gas flux from currently active lava lakes and discuss what insights the simulations can reveal about these complex natural systems. The simulation code is written in Matlab and has been tested on a limited parameter range. You will have the opportunity to implement additional code features and develop post-processing scripts to analyse output. If your prior coding experience is limited you will be given sufficient training to accomplish these tasks.

Additional programme cost: £1,000

Knowledge background of the student

You will have a background either in Earth Sciences, Geology, or Geophysics, with an interest in computer modelling, or a degree in Physics, Applied Math, or Engineering, with an interest in Geology and Volcanology. Basic skills in Matlab or similar language are desirable.

Career prospects

This project will help you develop skills in quantitative analysis, numerical modelling, code development, and project management. These skill are essential for pursuing a career in academic research, but also valuable for related industrial, engineering, or public service careers.

---

+++

Onwards and Upwards – Modelling Gravitational Stability of Magma Mush (Tobias Keller)

Supervisor: Tobias Keller

Project aim:

You will characterise the gravitational stability and diapiric rise of magma lenses in crustal mush bodies by means of custom-built computer simulations. The aim is to better understand the time and length scales of magma ascent and intrusion in the mid to upper crust.

Project rationale:

Magma ascending from sources in the upper mantle is either emplaced as plutonic rocks or erupted at active volcanoes. The processing of magma through the crust remains poorly understood, but observations point towards the existence of vertically extensive bodies of crystal-rich magma mush, within which transient melt-rich magma lenses can form [Cashman et al., 2017, doi: 10.1126/science.aag3055.]. These magma lenses can become gravitationally unstable and rise as diapirs into overlying crustal layers.

The time and length scales of magma ascent are likely controlled by the chemistry and temperature of the magma, the deformational properties of the surrounding crust, and the flux of magma fed from the melt source beneath. As these processes are inaccessible to direct observation, many aspects remain unresolved. This project is based on a recent study [Seropian et al., 2018, doi: 10.1029/2018JB015523.] that combines analogue modelling and mathematical analysis to elucidate the gravitational stability of magma lenses in mush bodies.

You will complement the ongoing analogue modelling efforts of collaborators at the University of Bristol by means of custom-built numerical simulations. 

Methods

You will use simulations of magma flow and rock deformation to test how the gravitational stability of magma lenses depends on the deformational properties of magma mush and wall rock, the structure of the crust, and the flux of melt from sources below.

You will reproduce analogue model results to benchmark the code before scaling simulations up from laboratory to crustal scales. You will systematically test model parameters and analyse the results to identify pertinent length and time scales of magma ascent that help explain the internal dynamics of crustal magma processing.

Finally, you will compare your findings to observational records of plutonic rock complexes, crustal tomography, and volcanic output. The simulation code is written in Matlab and has been tested on a limited parameter range.

You will have the opportunity to implement additional code features and develop post-processing scripts to analyse output. If your prior coding experience is limited you will be given sufficient training to accomplish the required tasks. You will regularly communicate with Prof. Alison Rust (Bristol), who leads the analogue modelling efforts this study relates to.

Additional programme cost: £1,000

Knowledge background of the student

You will have a background either in Earth Sciences, Geology, or Geophysics, with an interest in computer modelling, or a degree in Physics, Applied Math, or Engineering, with an interest in Geology and Volcanology. Basic skills in Matlab or similar language are desirable.

Career prospects

This project will help you develop skills in quantitative analysis, numerical modelling, code development, and project management. These skill are essential for pursuing a career in academic research, but also valuable for related industrial, engineering, or public service careers.

---

+++

Reconstructing terrestrial Scottish Carboniferous palaeoclimate through clumped isotope analysis of sideritic ironstones (Dr John MacDonald)

Supervisors: Dr John MacDonald and Dr John Faithfull (Hunterian Museum)

Project aim:

This project seeks to precisely and quantitatively reconstruct late Carboniferous palaeotemperatures in the Midland Valley of Scotland with sideritic ironstones, using a combination of fieldwork, petrography and innovative clumped isotope laboratory analysis.

Project rationale:

Terrestrial palaeoclimate can be reconstructed in a qualitative fashion from fossil and palynological records. Quantitative proxies for quantitatively and precisely reconstructing ancient terrestrial palaeotemperatures are more limited. The relatively recently developed clumped isotope palaeotemperature proxy has been widely used in marine palaeoclimatic reconstructions, utilising the ability of molecular isotopic arrangements in the calcite shells of marine organisms to record seawater temperatures.

For ancient terrestrial palaeotemperatures, another carbonate mineral – siderite – gives the opportunity to apply clumped isotopes. In the Scottish Carboniferous, siderite is found in ironstones, such as the Musselband Ironstone. These sideritic ironstones represent non-marine horizons and can therefore be used to reconstruct terrestrial palaeoclimate.

Methods

Using a combination of samples collected in the field, and from the UK Geoenergy Observatories programme core from Dalmarnock near Glasgow, the student will undertake a multi-proxy research approach to reconstructing Scottish Carboniferous palaeoclimate.

You will conduct fieldwork to log and sample ironstones in central Scotland and integrate these with samples obtained from the Dalmarnock borehole and its associated records.

You will make thin sections of the samples and conduct optical petrography to quantify the mineralogy and textures of the sideritic ironstones. Samples will then be prepared for clumped isotope analysis, from which siderite precipitation temperatures – and therefore past surface temperatures – will be reconstructed. Full training will be given in all techniques.

Additional programme cost: £1,000

Knowledge background of the student

The student should have a geology background with an interest in sedimentology, stratigraphy and palaeoclimate. Laboratory experience is desirable although not essential but a willingness to learn new techniques in a laboratory environment is vital. A competent ability in scientific writing, gained through an undergraduate mapping or research project, is expected.

Career prospects

This MSc by Research project will give the student experience in cutting-edge analytical techniques such as clumped isotopes, along with a range of general research skills. These skills will equip them for further research through a PhD or a career in the environmental sector where knowledge of climate parameters is important.

---

+++

Denudation on the Himalayas: where, when, how much? (Dr Cristina Persano)

Supervisors: Dr Cristina Persano, Dr Martin Hurst and Dr Gyana Ranjan Tripathy (Department of Earth and Climate Sciences, Indian Institute of Science Education and Research, Pune,  India)

Project aim:

This project aims to reconstruct the temporal and spatial distribution of denudation across the Himalayas in the late Cenozoic to assess their contribution, over time, to the global sediment systems. Denudation will be constrained using published low temperature thermochrometric data (mica and feldspars Ar/Ar, apatite and zircon fission track and (U-Th-Sm)/He analyses).

The proposed research objectives are to (i) build a database of mineral cooling ages that will be be made publicly available to academics; (ii) use the thermochronometric data to build cooling isoage surfaces across the mountain belt to constrain its spatial and temporal development; (iii) reconstruct exhumation rates through time and, using mass balance calculations, quantitatively compare them with the volume of sediments offshore, to identify the Himalayas contribution as a global source of sediments.

Project rationale:

The Himalayas are one of the biggest topographic features on our planet and a ‘landscape of extremes’. It is on the Himalayas, for examples, that the highest summits, relief and erosion rates are recorded.  The processes and locations of where erosion takes place and how they have varied through time is still unknown, as studies tend to focus on one particular area, rather than the entire belt.

The Himalayas, however, are so big that they influence the global climate and they represent a source of sediments that is significant, although still unquantified, for the sediment budget of all the planet. On the other end, climate and, in particular, the alternation of a wet and dry monsoon has an important effect on the present erosion rates, but how climate and tectonic processes interacted with each other in the past to produce the mountain belt we see now is not very well understood. The plethora of thermochrometric data now available from the literature permits to reconstruct denudation through time across the entire mountain range.  

Methods

The project requires to build an archive of thermochronometric data on a platform, probably based on excel, that will be available to the academic world. The data will be used to build ‘isoage contours’ that take the rock age-present elevation relationship into account to reconstruct the denudational history of the entire mountain belt in a GIS environment.

Additional programme cost: £1,000

Knowledge background of the student

Student with a minimum 2:1 in a relevant degree (e.g. Geoscience, Physical Geography). The student will need to have a good mathematical background (Calculus 1 would be desirable, or at least Math at higher level).

Career prospects

The student will receive training in the use of numerical modelling and GIS software packages. Research based skills including scientific writing, presentation (poster and oral) and outreach skills will be gained as part of this project. Such skill sets are relevant for a future career in both industry (geospatial, geological) and academia (PhD programmes).

The student will be eligible to attend a range of study- and career-enhancing workshops as part of their postgraduate training at the University of Glasgow.

---

+++

Baffin Island plume development and evolution (Dr Lydia Hallis)

Supervisors: Dr Lydia Hallis

Project aim:

  1. Characterise sample mineralogy, via SEM analyses, and locate olivine-bound glassy melt inclusions
  2. Use SEM EDX and WDX in combination to determine inclusion chemistry. This will allow for the differentiation of samples from the previously reported depleted and enriched plume sources. Melt inclusion chemistry will also indicate if crustal assimilation or sea-water contamination has affected any of the samples.
  3. Use LA-ICP-MS to measure inclusion trace-element chemistry (including REE), to again look for crustal assimilation and contamination.
  4. Crush olivine separates of each sample to gain 3He/4He isotopic data, in order to determine if these samples originate from an undegassed, deep mantle source, as suggested by previous Baffin Island picrite analyses.

Studies of the trace-element, radiogenic-isotope, and noble gas isotope characteristics of mid-ocean ridge basalts (MORBs) and ocean-island basalts (OIBs) reveal the existence of domains within Earth’s mantle that have experienced distinct evolutionary histories. Although alternative theories exist, most studies suggest that high 3He/4He ratios in some OIBs indicate the existence of relatively undegassed regions in the deep mantle compared to the upper mantle, which retain a greater proportion of their primordial He. Study of the chemistry of these deep mantle regions can thus provide information relating to the Earth’s original composition, and the building blocks it formed from.

The Baffin Bay Volcanic Province erupted ~58 million years ago, during the rifting apart of Greenland and Baffin Island, which formed the Davis Strait. The resulting picrites are among the earliest manifestations of the ancestral Iceland mantle plume, and are thought to have a composition that reflects little fractionation from the mantle source. Based on the trace element compositions of chilled margins and glasses from the Baffin Bay picrites, Robillard et al. (1992) demonstrated that both slightly depleted lavas (similar to NMORBS) and slightly enriched lavas (similar to E-MORBS) were erupted. Both N-type and E-type picrites from this location have been reported to contain the highest 3He/4He ratios of any terrestrial samples yet measured, at between 31 and 50 Ra. These high 3He/4He ratios highlight the undegassed nature of the Baffin Island mantle plume material, indicating it has been largely isolated from mantle mixing over geological time.

The PhD candidate will analyse the mineralogy, petrology and chemistry of 5 unstudied Baffin Island picrites, originally collected from north-east Padloping Island in 2004. The aim of the project is to determine if the Baffin Island source region has been truly isolated from crustal recycling and mantle mixing throughout Earth history.

---

We aim to advance fundamental, quantitative understanding of critical geological phenomena on Earth and across the Solar System to solve scientific, engineering, and societal challenges.

  • PhD: 3-4 years full-time; 6-8 years part-time; Thesis of Max 80,000 words
  • MSc (Research): 1-2 years full-time; 2-3 years part-time;
  • MPhil (Research): 2-3 years full-time; 3-4 years part-time;

Overview

Dynamic Earth & Planetary Evolution

Quantitative understanding of Earth and planetary materials to elucidate mechanisms, drivers, and timescales of dynamic processes within our Solar System.

Susan Waldron

Professor Susan Waldron discusses research opportunities within Earth Sciences

Study options

  full-time
(years)
part-time
(years)
Phd 3-4 6-8
MSc (Res) 1-2 2-3
MPhil 2-3 3-4

Entry requirements

2.1 Honours degree or equivalent

Required documentation

Applicants should submit:

  • Transcripts/degree certificate 
  • Two references
  • A one-page research proposal
  • CV
  • Name of potential Supervisor

Research proposal

Candidates are required to provide a single page outline of the research subject proposed (approximately 1000 words). This need not be a final thesis proposal but should include:

  • a straightforward, descriptive, and informative title
  • the question that your research will address
  • an account of why this question is important and worth investigating
  • an assessment of how your own research will engage with recent study in the subject
  • a brief account of the methodology and approach you will take
  • a discussion of the primary sources that your research will draw upon, including printed books, manuscripts, archives, libraries, or museums
  • an indicative bibliography of secondary sources that you have already consulted and/or are planning to consult

English language requirements

Subject to confirmation for 2022 entry

For applicants whose first language is not English, the University sets a minimum English Language proficiency level.

International English Language Testing System (IELTS) Academic module (not General Training)

  • 6.5 with no sub-test under 6.0. 
  • Tests must have been taken within 4 years 5 months of start date. Combined scores from two tests taken within 6 months of each other can be considered.

Common equivalent English language qualifications

All stated English tests are acceptable for admission to this programme:

TOEFL (ib, my best or athome)

  • 90 with minimum R 20, L 19, S 19, W 23. 
  • Tests must have been taken within 4 years 5 months of start date. Combined scores from two tests taken within 6 months of each other can be considered.

PTE (Academic)

  • 60 with minimum 59 in all sub-tests.
  • Tests must have been taken within 4 years 5 months of start date. Combined scores from two tests taken within 6 months of each other can be considered.

Glasgow International College English Language (and other foundation providers)

  • 65%.
  • Tests are accepted for academic year following sitting.

University of Glasgow Pre-sessional courses

  • Tests are accepted for academic year following sitting.


Alternatives to English Language qualification

  • Undergraduate degree from English speaking country (including Canada if taught in English)
  • Undergraduate 2+2 degree from English speaking country
  • Undergraduate 2+2 TNE degree taught in English in non-English speaking country
  • Masters degree from English speaking country
  • Masters degree (equivalent on NARIC to UK masters degree) taught in English in non-English speaking country.

For international students, the Home Office has confirmed that the University can choose to use these tests to make its own assessment of English language ability for visa applications to degree level programmes. The University is also able to accept an IELTS test (Academic module) from any of the 1000 IELTS test centres from around the world and we do not require a specific UKVI IELTS test for degree level programmes. We therefore still accept any of the English tests listed for admission to this programme.

Pre-sessional courses

The University of Glasgow accepts evidence of the required language level from the English for Academic Study Unit Pre-sessional courses. We also consider other BALEAP accredited pre-sessional courses:

Fees and funding

Fees

2022/23

  • UK: fee not  yet available (2021/22 fee was £4,500)
  • International & EU: £23,950

Prices are based on the annual fee for full-time study. Fees for part-time study are half the full-time fee.

Additional fees for all students:

  • Re-submission by a research student £540
  • Submission for a higher degree by published work £1,355
  • Submission of thesis after deadline lapsed £350
  • Submission by staff in receipt of staff scholarship £790

Depending on the nature of the research project, some students will be expected to pay a bench fee (also known as research support costs) to cover additional costs. The exact amount will be provided in the offer letter.

Alumni discount

We offer a 10% discount to our alumni on all Postgraduate Research and full Postgraduate Taught Masters programmes. This includes University of Glasgow graduates and those who have completed Junior Year Abroad, Exchange programme or International Summer School with us. The discount is applied at registration for students who are not in receipt of another discount or scholarship funded by the University. No additional application is required.

Funding for EU students

The Scottish Government has confirmed that fees for EU students commencing their studies 2020/21 will be at the same level as those for UK student. 

From 2021/22, new entrant EU students will pay the same fees as all other international students.

+++

2021/22 fees

  • UK: £4,500
  • International & EU: £23,000

Additional fees for all students:

  • Re-submission by a research student £525
  • Submission for a higher degree by published work £1,315
  • Submission of thesis after deadline lapsed £340
  • Submission by staff in receipt of staff scholarship £765

---

Funding

Support

The vibrancy of our research environment derives from our large body of postgraduate students.

We take an integrated approach to study at Glasgow, bringing together internationally leading expertise in physical and human geography, geology and geomatics.

Our postgraduate students benefit from many fieldwork opportunities, ranging from short day excursions close to Glasgow to longer residential field trips, which may involved overseas travel.

The School has close links with industry. We arrange many guest speakers and there are also informal opportunities to meet people from industry at open events. Projects may be carried out in conjunction with industry.

You will be part of a Graduate School which provides the highest level of support to its students.

The overall aim of our Graduate School is to provide a world-leading environment for students which is intellectually stimulating, encourages them to contribute to culture, society and the economy and enables them to become leaders in a global environment.

We have a diverse community of over 750 students from more than 50 countries who work in innovative and transformative disciplinary and interdisciplinary fields. An important part of our work is to bring our students together and to ensure they consider themselves an important part of the University’s academic community.

Being part of our Graduate School community will be of huge advantage to you in your studies and beyond and we offer students a number of benefits in addition to exceptional teaching and supervision, including:

  • A wide-ranging and responsive research student training programme which enables you to enhance your skills and successfully complete your studies.
  • Mobility scholarships of up to £4000 to enable you to undertake work in collaboration with an international partner.
  • A diverse programme of activities which will ensure you feel part of the wider-research community (including our biannual science slam event).
  • A residential trip for all new research students.
  • The opportunity to engage with industry-partners through training, placements and events.
  • Professionally accredited programmes.
  • Unique Masters programmes run in collaboration with other organisations.
  • State-of-the-art facilities including the James Watt Nanofabrication Centre and the Kelvin Nanocharacterisation Centre.
  • Highly-rated support for international students.

Over the last five years, we have helped over 600 students to complete their research studies and our students have gone on to take up prestigious posts in industries across the world.

Email: scieng-gradschool@glasgow.ac.uk

How to apply

Identify potential supervisors

All Postgraduate Research Students are allocated a supervisor who will act as the main source of academic support and research mentoring. You may want to identify a potential supervisor and contact them to discuss your research proposal before you apply. Please note, even if you have spoken to an academic staff member about your proposal you still need to submit an online application form.

You can find relevant academic staff members with our staff research interests search.


Gather your documents

Before applying please make sure you gather the following supporting documentation:

  1. Final or current degree transcripts including grades (and an official translation, if needed) – scanned copy in colour of the original document.
  2. Degree certificates (and an official translation, if needed): scanned copy in colour of the original document.
  3. Two references on headed paper and signed by the referee. One must be academic, the other can be academic or professional. References may be uploaded as part of the application form or you may enter your referees contact details on the application form. We will then email your referee and notify you when we receive the reference.  We can also accept confidential references direct to rio-researchadmissions@glasgow.ac.uk, from the referee’s university or business email account.
  4. Research proposal, CV, samples of written work as per requirements for each subject area.

Apply now

I've applied. What next?

If you have any other trouble accessing Applicant Self-Service, please see Application Troubleshooting/FAQs. 


Contact us

International Students

  • Advice on visa, immigrations and the Academic Technology Approval Scheme (ATAS) can be found at 'Apply for a visa outside the UK or come to the UK as an EU / EEA national'