Postgraduate research 

Physics & Astronomy PhD/EngD/MPhil/MSc (Research)

Start dates for incoming postgraduate research students

1 October 2020 was the preferred date to start your PhD [or the date on your offer letter].

We will run a full on-line induction and training programme that may be taken remotely for the first month. Most of our doctoral researcher training programme will also be available online and we will offer many remote opportunities to help you become part of the Graduate School and wider University community.  

Research that involves laboratory work may start following the completion of induction (all labs are currently up and running).

Some types of research (such as non-laboratory work) and supervision can be carried out entirely remotely and this may be the most appropriate way for you to work at the moment.  Contact your supervisor, if you believe this applies to your research to discuss requirements for home/remote working. You may also require the agreement of the subject, school or institute convener if you wish to carry out your PhD remotely for a fixed period. You may not continue remotely unless an adequate plan is agreed to ensure sufficient work can be undertaken prior to starting the experimental work. It is important that starting remotely does not affect the overall PhD timescale.

Delayed start dates

We understand there may be good reasons to delay:

  • If it is necessary to travel to Glasgow to begin your research, but there are restrictions preventing travel at this time, then a delay to 5 January 2021 is encouraged [when we will run full on-line induction and training programme]. You may also delay to another start time with the agreement of your supervisor and Graduate School.
  • For subjects where laboratory work is required to commence immediately following on-line induction and training and you are unable to come to Glasgow, you should consider delaying your start-date. Contact your supervisor or the Graduate School in this instance.
  • If your research involves objects, artefacts, archives or fieldwork, you should discuss this with your supervisor. Some kinds of work may be able to be started remotely; in other cases, it may be advisable to delay the start-date.
  • External government sponsors may prefer a delay and the University is happy to support this.

From our point of view, there is no disadvantage in deferring your PhD to a later agreed start date. Scholarship holders should check that this can still be provided with a delayed start.

Office and study space

At present, current staff and research students are not using office spaces on campus. We do not have a confirmed date for the return to office use, but all work that can be undertaken off-campus (ie is not lab-based) should be done at home or remotely at present.

Some study spaces are becoming available on campus with a booking system in place, such as the postgraduate study space in the University Library.

International/EU students remotely starting a funded PhD

You should check with your funder that you can be paid a stipend if you are not in the UK. If you are in receipt of a scholarship, you should contact the Graduate School for advice on opening a bank account to allow stipend payments.


Horse Head and Flame Nebula in the Hubble Palette

Current funded studentships

Studentships are available each year (from STFC, EPSRC and others). You should discuss opportunities with potential supervisors within the relevant research group listed below.

Application deadline for all studentships is 31 January 2021.

  • PhD: 3-4 years full-time; 6-8 years part-time; Thesis of Max 80,000 words
  • MSc (Research): 1-2 years full-time; 2-3 years part-time;
  • MPhil: 2-3 years full-time; 3-4 years part-time;
  • EngD: 4-5 years full-time; 8 years [for Optics and Photonics only] part-time;

Overview

Our strong collaborations with UK and international institutions contribute to an excellent environment for top quality research.

Research groups

Astronomy and astrophysics 

We cover a wide range of topics, including solar and plasma physics, cosmology and radio astronomy. Much of our research in solar physics concentrates on the theory, diagnostics and observation of solar flares, complementing our work in more general plasma theory and atmospheric plasmas.

Our research in radio astronomy and cosmology ranges from low frequency astronomy in space to probing the distribution of dark matter with galaxy surveys.

Extreme Light

What could you do if you had a camera so fast that is can freeze light in motion? Or a quatum sensing device that can measure the path taken by a single photon with a precision of a single atom? We are developing the techonlogies that will enable new forms of imaging with applications ranging from seeing behind and through walls to quantum microscopy.

Imaging concepts

We conduct research into new imaging techniques at optical and radio-frequency wavelengths and work closely with collaborators in industry, biology and medicine to apply these techniques in real-world applications.  Our main research fields are computational imaging, spectral imaging and biomedical imaging, particularly in the retina.

Institute for Gravitational Research

Our work includes a broad spectrum of research in and around the field of gravitational wave astronomy and cosmology. This includes:

  • the analysis and astrophysical interpretation of gravitational wave signals from the ground-based network of interferometric gravitational wave detectors including the LIGO observatories.
  • studies of precision novel interferometric sensing techniques to allow detectors to operate at and beyond the Standard Quantum Limit and the development of systems of ultra -low optical and mechanical loss for the suspensions of mirror test masses.

The group is also involved in the space-based LISA mission.

Materials and condensed matter physics 

We study fundamental phenomena and find solutions for critical issues such as energy, healthcare and information technology. Our research is underpinned by our capabilities in advanced characterisation, theoretical modelling, computational simulation, and a long-standing reputation for the development of transmission electron microscopy techniques. The group facilities include: advanced materials preparation and characterisation, ferromagnetic resonance, scanning probe microscopy, and state of the art high resolution electron microscopy.

Nuclear physics 

The group undertakes fundamental research into the structure of matter and understanding the processes of Quantum Chromodynamics (the strong nuclear interaction). We study the structure of nucleons (protons and neutrons) and also the spectrum of strongly interacting particles (hadrons). The group is involved at the highest level of international research in hadronic and nuclear physics, and in development of the latest detector technologies and analysis techniques for use in experiments. Our experimental programme is based in the US and Germany.

We also have a programme of applying nuclear physics techniques to applications in radioactive waste disposal, healthcare diagnostics and environmental monitoring.

Optics 

We are best known for our work on optical angular momentum (where light beams can spin microscopic objects) and our development of optical tweezers (which use laser beams to manipulate the microscopic world). We also study how tiny prisms and lenses can create strange optical transformations and how optical beams interact with cold atoms and gases.

Quantum theory 

Our research covers a range of topics in quantum theory, centred mostly on quantum information and quantum optics. We are interested in the foundations of quantum theory and especially he ways in which these appear in light-matter interactions. We work on:

  • quantum-limited measurements
  • the mechanical effects of light
  • the optics of chiral molecules
  • open systems
  • quantum thermodynamics.

We are theoretical physicists but we also enjoy working with experimentalists.

Experimental and theoretical particle physics

As part of several major international collaborations, we perform world-class research into fundamental particles and their interactions.

We are interested in phenomena that can be probed at the Large Hadron Collider at CERN as well as at future facilities. The theorists use the current Standard Model of particle physics, as well as credible extensions of it, to make predictions that can be tested by the experimentalists.

Theoretical work has a focus on the behaviour of the strong force as described by Quantum Chromodynamics, using both perturbation theory and nonperturbative methods of lattice QCD; the physics of the Higgs boson and the top quark, and the phenomenology of exotic new physics beyond the Standard Model.

The experimental group is a key member of both the ATLAS and LHCb experiments as well as leading work on the computing grid used for data analysis and detector developments for future collider and neutrino experiments.

More information

Study options

  full-time
(years)
part-time
(years)
Phd 3-4 6-8
EngD 4-5 8*
MSc (Res) 1-2 2-3
MPhil 2-3 3-4

* Part-time study is only available at EngD level in Optics and Photonics

Entry requirements

2.1 Honours degree or equivalent

Required documentation

Applicants should submit:

  • Transcripts/degree certificate 
  • Two references
  • CV
  • Name of potential Supervisor

Fees and funding

Fees

2021/22

  • UK fee to be confirmed by ukri.org (2020/21 fee was £4,407)
  • International & EU: £23,000

Prices are based on the annual fee for full-time study. Fees for part-time study are half the full-time fee.

Additional fees for all students:

  • Re-submission by a research student £540
  • Submission for a higher degree by published work £1,355
  • Submission of thesis after deadline lapsed £350
  • Submission by staff in receipt of staff scholarship £790

Depending on the nature of the research project, some students will be expected to pay a bench fee (also known as research support costs) to cover additional costs. The exact amount will be provided in the offer letter.

Alumni discount

We offer a 10% discount to our alumni on all Postgraduate Research and full Postgraduate Taught Masters programmes. This includes University of Glasgow graduates and those who have completed Junior Year Abroad, Exchange programme or International Summer School with us. The discount is applied at registration for students who are not in receipt of another discount or scholarship funded by the University. No additional application is required.

+++

2020/21 fees

  • £4,407 UK/EU
  • £21,920 outside EU

Prices are based on the annual fee for full-time study. Fees for part-time study are half the full-time fee.

Additional fees for all students:

  • Re-submission by a research student £525
  • Submission for a higher degree by published work £1,315
  • Submission of thesis after deadline lapsed £340
  • Submission by staff in receipt of staff scholarship £765

Depending on the nature of the research project, some students will be expected to pay a bench fee (also known as research support costs) to cover additional costs. The exact amount will be provided in the offer letter.

Alumni discount

We offer a 20% discount to our alumni commencing study in Academic session 2020/21, on all Postgraduate Research and full Postgraduate Taught Masters programmes. This includes University of Glasgow graduates and those who have completed a Study Abroad programme or the Erasmus Programme at the University of Glasgow. This discount can be awarded alongside other University scholarships. 

Funding for EU students

The Scottish Government has confirmed that fees for EU students commencing their studies 2020/21 will be at the same level as those for UK student.

---

+++

Scholarships

---

Support

We are a member of the Scottish Universities Physical Alliance (SUPA), a research alliance in physics between six Scottish Universities (Glasgow, Edinburgh, Heriot-Watt, St. Andrews, Strathclyde, West of Scotland). The SUPA graduate school gives Glasgow students access to expertise from all the SUPA institutes through the various courses.

The school has a vibrant research colloquia programme delivered by recognised experts.

You will be part of a Graduate School which provides the highest level of support to its students. The overall aim of our Graduate School is to provide a world-leading environment for students which is intellectually stimulating, encourages them to contribute to culture, society and the economy and enables them to become leaders in a global environment.

We have a diverse community of over 750 students from more than 50 countries who work in innovative and transformative disciplinary and interdisciplinary fields. An important part of our work is to bring our students together and to ensure they consider themselves an important part of the University’s academic community.

Being part of our Graduate School community will be of huge advantage to you in your studies and beyond and we offer students a number of benefits in addition to exceptional teaching and supervision, including:

  • A wide-ranging and responsive research student training programme which enables you to enhance your skills and successfully complete your studies.
  • Mobility scholarships of up to £4000 to enable you to undertake work in collaboration with an international partner.
  • A diverse programme of activities which will ensure you feel part of the wider-research community (including our biannual science slam event).
  • A residential trip for all new research students.
  • The opportunity to engage with industry-partners through training, placements and events.
  • Professionally accredited programmes.
  • Unique Masters programmes run in collaboration with other organisations.
  • State-of-the-art facilities including the James Watt Nanofabrication Centre and the Kelvin Nanocharacterisation Centre.
  • Highly-rated support for international students.

Email: scieng-gradschool@glasgow.ac.uk

Collaborations

Our research groups work with a range of international collaborators and students have the opportunity to visit and work at a range of international institutes and laboratories including:

  • CERN (European Laboratory for Particle Physics, Switzerland)
  • Jefferson Laboratory (USA)
  • Ligo lab (USA)
  • ICRR (Japan). 

Resources

Our in-house research facilities include:

  • The Glasgow Laboratory for Advanced Detector Development (GLADD) developing the next generation of advanced sensor systems for particle physics experiments, medical applications and security systems.
  • The SRDG Materials Characterisation Laboratory, developing materials for gravitational wave detectors.
  • The Kelvin Nanocharacterisation Centre, researching the atomic, electric and magnetic structure of materials using one of the world's highest performance electron microscopes.
  • ScotGrid, providing leading edge e-science facilities.
  • The Optics group provides world-class facilities in structured light and quantum imaging.

Our research teams are also partners in many major national and international research projects including:

  • The ATLAS experiment at the LHC at CERN, studying the fundamental structure of matter at unprecedented energies.
  • LHCb at the LHC in CERN, studying the origin of matter-antimatter asymmetry.
  • The GEO660, LIGO and Virgo Scientific Collaborations, seeking to detect gravitational waves and use these as an additional probe of major astrophysical phenomena.
  • Jefferson Lab, the top nuclear physics research facility in the United States.
  • The SuperSTEM facility (the EPSRC National Facility for Aberration-Corrected Scanning Transmission Electron Microscopy) running one of the highest resolution electron microscopes in the world, and accessible to scientists from all round the UK and the rest of the world.
  • The award winning NASA RHESSI X-ray mission, studying solar flares and several other forthcoming international space missions such as ESA's Solar Orbiter.
  • The F-CHROMA project, focusing on space-based and ground-based multi-mode, multi-wavelength study of solar flares.

Our staff and students have the opportunity to use these facilities, and PhD students are in some cases seconded to external facilities for a significant part of their research.

Graduates leave with numeracy, problem-solving skills, a capacity for logical thought and the capability to apply abstract concepts to the real world, as well as experience of working in teams. Career opportunities for physicists can be found in research in universities or in many areas of industry: high tech manufacturing, semiconductor, materials, finance, consultancy and teaching.

How to apply

Identify potential supervisors

All Postgraduate Research Students are allocated a supervisor who will act as the main source of academic support and research mentoring. You may want to identify a potential supervisor and contact them to discuss your research proposal before you apply. Please note, even if you have spoken to an academic staff member about your proposal you still need to submit an online application form.

You can find relevant academic staff members with our staff research interests search.


Gather your documents

Before applying please make sure you gather the following supporting documentation:

  1. Final or current degree transcripts including grades (and an official translation, if needed) – scanned copy in colour of the original document.
  2. Degree certificates (and an official translation, if needed): scanned copy in colour of the original document.
  3. Two references on headed paper and signed by the referee. One must be academic, the other can be academic or professional. References may be uploaded as part of the application form or you may enter your referees contact details on the application form. We will then email your referee and notify you when we receive the reference.  We can also accept confidential references direct to rio-researchadmissions@glasgow.ac.uk, from the referee’s university or business email account.
  4. Research proposal, CV, samples of written work as per requirements for each subject area.

Apply now

I've applied. What next?

If you have any other trouble accessing Applicant Self-Service, please see Application Troubleshooting/FAQs. 


Contact us

International Students