Dr Mu Niu

  • Senior Lecturer (Statistics)

email: Mu.Niu@glasgow.ac.uk

15 University Gardens

Import to contacts

Publications

List by: Type | Date

Jump to: 2023 | 2022 | 2021 | 2019 | 2018 | 2017 | 2016 | 2015 | 2013
Number of items: 17.

2023

Fang, Y., Niu, M., Cheung, P. and Lin, L. (2023) Extrinsic Bayesian optimization on manifolds. Algorithms, 16(2), 117. (doi: 10.3390/a16020117)

Niu, M., Dai, Z., Cheung, P. and Wang, Y. (2023) Intrinsic Gaussian process on unknown manifolds with probabilistic metrics. Journal of Machine Learning Research, 24(104), pp. 1-42.

2022

Szili, B., Niu, M. and Neocleous, T. (2022) A Structural Learning Method for Graphical Models. In: 4th International Conference on Statistics: Theory and Applications (ICSTA'22), Prague, Czech Republic, 28-30 Jul 2022, p. 113. ISBN 9781990800085 (doi: 10.11159/icsta22.113)

Niu, M., Frost, F., Milner, J. E., Skarin, A. and Blackwell, P. G. (2022) Modelling group movement with behaviour switching in continuous time. Biometrics, 78(1), pp. 286-299. (doi: 10.1111/biom.13412) (PMID:33270218)

2021

Niu, M., Wandy, J. , Daly, R. , Rogers, S. and Husmeier, D. (2021) R package for statistical inference in dynamical systems using kernel based gradient matching: KGode. Computational Statistics, 36(1), pp. 715-747. (doi: 10.1007/s00180-020-01014-x)

Milner, J. E., Blackwell, P. G. and Niu, M. (2021) Modelling and inference for the movement of interacting animals. Methods in Ecology and Evolution, 12(1), pp. 54-69. (doi: 10.1111/2041-210X.13468)

2019

Niu, M., Cheung, P., Lin, L., Dai, Z., Lawrence, N. and Dunson, D. (2019) Intrinsic Gaussian processes on complex constrained domains. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 81(3), pp. 603-627. (doi: 10.1111/rssb.12320)

Lin, L., Niu, M., Cheung, P. and Dunson, D. (2019) Extrinsic Gaussian processes for regression and classification on manifolds. Bayesian Analysis, 14(3), pp. 887-906. (doi: 10.1214/18-BA1135)

2018

Niu, M., Macdonald, B. , Rogers, S. , Filippone, M. and Husmeier, D. (2018) Statistical inference in mechanistic models: time warping for improved gradient matching. Computational Statistics, 33(2), pp. 1091-1123. (doi: 10.1007/s00180-017-0753-z)

2017

Niu, M., Rogers, S. , Filippone, M. and Husmeier, D. (2017) Parameter Inference in Differential Equation Models Using Time Warped Gradient Matching. RSS 2017 Annual Conference, Glasgow, Scotland, 04-07 Sep 2017.

Niu, M., Rogers, S. , Filippone, M. and Husmeier, D. (2017) Parameter Inference in Differential Equation Models of Biopathways using Time Warped Gradient Matching. In: 13th International Conference on Computational Intelligence Methods for Bioinformatics and Biostatistics, Stirling, UK, 01-03 Sep 2016, pp. 145-159. ISBN 9783319678337 (doi: 10.1007/978-3-319-67834-4_12)

2016

Macdonald, B., Niu, M., Rogers, S. , Filippone, M. and Husmeier, D. (2016) Approximate parameter inference in systems biology using gradient matching: a comparative evaluation. BioMedical Engineering OnLine, 15, 80. (doi: 10.1186/s12938-016-0186-x) (PMID:27454253) (PMCID:PMC4959362)

Niu, M., Rogers, S. , Filippone, M. and Husmeier, D. (2016) Fast inference in nonlinear dynamical systems using gradient matching. Proceedings of Machine Learning Research, 48, pp. 1699-1707.

Niu, M., Blackwell, P. G. and Skarin, A. (2016) Modeling interdependent animal movement in continuous time. Biometrics, 72(2), pp. 315-324. (doi: 10.1111/biom.12454) (PMID:26812666)

Blackwell, P. G., Niu, M., Lambert, M. S., LaPoint, S. D. and O'Hara, R. B. (2016) Exact Bayesian inference for animal movement in continuous time. Methods in Ecology and Evolution, 7(2), pp. 184-195. (doi: 10.1111/2041-210X.12460)

2015

Niu, M., Filippone, M., Husmeier, D. and Rogers, S. (2015) Inference in Nonlinear Differential Equations. In: 30th International Workshop on Statistical Modelling, Linz, Austria, 06-10 Jul 2015, pp. 187-190.

2013

Reimer, P. J. et al. (2013) IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon, 55(4), pp. 1869-1887. (doi: 10.2458/azu_js_rc.55.16947)

This list was generated on Sat Sep 7 10:11:48 2024 BST.
Number of items: 17.

Articles

Fang, Y., Niu, M., Cheung, P. and Lin, L. (2023) Extrinsic Bayesian optimization on manifolds. Algorithms, 16(2), 117. (doi: 10.3390/a16020117)

Niu, M., Dai, Z., Cheung, P. and Wang, Y. (2023) Intrinsic Gaussian process on unknown manifolds with probabilistic metrics. Journal of Machine Learning Research, 24(104), pp. 1-42.

Niu, M., Frost, F., Milner, J. E., Skarin, A. and Blackwell, P. G. (2022) Modelling group movement with behaviour switching in continuous time. Biometrics, 78(1), pp. 286-299. (doi: 10.1111/biom.13412) (PMID:33270218)

Niu, M., Wandy, J. , Daly, R. , Rogers, S. and Husmeier, D. (2021) R package for statistical inference in dynamical systems using kernel based gradient matching: KGode. Computational Statistics, 36(1), pp. 715-747. (doi: 10.1007/s00180-020-01014-x)

Milner, J. E., Blackwell, P. G. and Niu, M. (2021) Modelling and inference for the movement of interacting animals. Methods in Ecology and Evolution, 12(1), pp. 54-69. (doi: 10.1111/2041-210X.13468)

Niu, M., Cheung, P., Lin, L., Dai, Z., Lawrence, N. and Dunson, D. (2019) Intrinsic Gaussian processes on complex constrained domains. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 81(3), pp. 603-627. (doi: 10.1111/rssb.12320)

Lin, L., Niu, M., Cheung, P. and Dunson, D. (2019) Extrinsic Gaussian processes for regression and classification on manifolds. Bayesian Analysis, 14(3), pp. 887-906. (doi: 10.1214/18-BA1135)

Niu, M., Macdonald, B. , Rogers, S. , Filippone, M. and Husmeier, D. (2018) Statistical inference in mechanistic models: time warping for improved gradient matching. Computational Statistics, 33(2), pp. 1091-1123. (doi: 10.1007/s00180-017-0753-z)

Macdonald, B., Niu, M., Rogers, S. , Filippone, M. and Husmeier, D. (2016) Approximate parameter inference in systems biology using gradient matching: a comparative evaluation. BioMedical Engineering OnLine, 15, 80. (doi: 10.1186/s12938-016-0186-x) (PMID:27454253) (PMCID:PMC4959362)

Niu, M., Rogers, S. , Filippone, M. and Husmeier, D. (2016) Fast inference in nonlinear dynamical systems using gradient matching. Proceedings of Machine Learning Research, 48, pp. 1699-1707.

Niu, M., Blackwell, P. G. and Skarin, A. (2016) Modeling interdependent animal movement in continuous time. Biometrics, 72(2), pp. 315-324. (doi: 10.1111/biom.12454) (PMID:26812666)

Blackwell, P. G., Niu, M., Lambert, M. S., LaPoint, S. D. and O'Hara, R. B. (2016) Exact Bayesian inference for animal movement in continuous time. Methods in Ecology and Evolution, 7(2), pp. 184-195. (doi: 10.1111/2041-210X.12460)

Reimer, P. J. et al. (2013) IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon, 55(4), pp. 1869-1887. (doi: 10.2458/azu_js_rc.55.16947)

Conference or Workshop Item

Niu, M., Rogers, S. , Filippone, M. and Husmeier, D. (2017) Parameter Inference in Differential Equation Models Using Time Warped Gradient Matching. RSS 2017 Annual Conference, Glasgow, Scotland, 04-07 Sep 2017.

Conference Proceedings

Szili, B., Niu, M. and Neocleous, T. (2022) A Structural Learning Method for Graphical Models. In: 4th International Conference on Statistics: Theory and Applications (ICSTA'22), Prague, Czech Republic, 28-30 Jul 2022, p. 113. ISBN 9781990800085 (doi: 10.11159/icsta22.113)

Niu, M., Rogers, S. , Filippone, M. and Husmeier, D. (2017) Parameter Inference in Differential Equation Models of Biopathways using Time Warped Gradient Matching. In: 13th International Conference on Computational Intelligence Methods for Bioinformatics and Biostatistics, Stirling, UK, 01-03 Sep 2016, pp. 145-159. ISBN 9783319678337 (doi: 10.1007/978-3-319-67834-4_12)

Niu, M., Filippone, M., Husmeier, D. and Rogers, S. (2015) Inference in Nonlinear Differential Equations. In: 30th International Workshop on Statistical Modelling, Linz, Austria, 06-10 Jul 2015, pp. 187-190.

This list was generated on Sat Sep 7 10:11:48 2024 BST.

Supervision

  • Liu, Yuan
    Sparse Intrinsic Gaussian Processes and Bayesian Optimization in Complex Constrained Domains
  • Ren, Hongjin
    Gaussian Process Emulation for Mathematical Models of the Heart
  • Zhang, Wenhui
    Deep Probability Contour-based Tumour Segmentation and Uncertainty Quantification in Positron Emission Tomography Imaging

Research datasets

Jump to: 2016
Number of items: 1.

2016

Niu, M., Rogers, S. , Filippone, M. and Husmeier, D. (2016) Fast Parameter Inference in Nonlinear Dynamical Systems using Iterative Gradient Matching. [Data Collection]

This list was generated on Sat Sep 7 10:11:50 2024 BST.