Mr Douglas Strathdee

  • Head of Transgenic Tehcnology (School of Cancer Sciences)

Publications

List by: Type | Date

Jump to: 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2013 | 2012
Number of items: 31.

2023

Perera, G., Power, L., Larson, A., Codden, C. J., Awata, J., Batorsky, R., Strathdee, D. and Chin, M. T. (2023) Single cell transcriptomic analysis in a mouse model of Barth syndrome reveals cell-specific alterations in gene expression and intercellular communication. International Journal of Molecular Sciences, 24(14), 11594. (doi: 10.3390/ijms241411594) (PMID:37511352) (PMCID:PMC10380964)

2022

Flanagan, D. J. et al. (2022) Epithelial TGFβ engages growth-factor signalling to circumvent apoptosis and drive intestinal tumourigenesis with aggressive features. Nature Communications, 13, 7551. (doi: 10.1038/s41467-022-35134-3) (PMID:36477656) (PMCID:PMC9729215)

Baudot, A. D. et al. (2022) Glycan degradation promotes macroautophagy. Proceedings of the National Academy of Sciences of the United States of America, 119(26), e211150611. (doi: 10.1073/pnas.2111506119) (PMID:35737835)

Humpton, T. J. et al. (2022) A noninvasive iRFP713 p53 reporter reveals dynamic p53 activity in response to irradiation and liver regeneration in vivo. Science Signaling, 15(720), eabd9099. (doi: 10.1126/scisignal.abd9099) (PMID:35133863) (PMCID:PMC7612476)

2021

Leach, J. D.G. et al. (2021) Oncogenic BRAF, unrestrained by TGFβ-receptor signalling, drives right-sided colonic tumorigenesis. Nature Communications, 12, 3464. (doi: 10.1038/s41467-021-23717-5) (PMID:34103493) (PMCID:PMC8187652)

Gudiño, V. et al. (2021) RAC1B modulates intestinal tumourigenesis via modulation of WNT and EGFR signalling pathways. Nature Communications, 12, 2335. (doi: 10.1038/s41467-021-22531-3) (PMID:33879799) (PMCID:PMC8058071)

Swaminathan, K., Campbell, A., Papalazarou, V., Jaber-Hijazi, F. , Nixon, C., McGhee, E., Strathdee, D., Sansom, O. J. and Machesky, L. M. (2021) The RAC1 target NCKAP1 plays a crucial role in the progression of Braf;Pten-driven melanoma in mice. Journal of Investigative Dermatology, 141(3), 628-637.e15. (doi: 10.1016/j.jid.2020.06.029) (PMID:32777214)

Najumudeen, A. K. et al. (2021) The amino acid transporter SLC7A5 is required for efficient growth of KRAS-mutant colorectal cancer. Nature Genetics, 53, pp. 16-26. (doi: 10.1038/s41588-020-00753-3) (PMID:33414552)

Pickering, K.A. et al. (2021) A RAC-GEF network critical for early intestinal tumourigenesis. Nature Communications, 12, 56. (doi: 10.1038/s41467-020-20255-4) (PMID:33397922) (PMCID:PMC7782582)

Humpton, T. J. et al. (2021) Differential requirements for MDM2 E3 activity during embryogenesis and in adult mice. Genes and Development, 35(1-2), pp. 117-132. (doi: 10.1101/gad.341875.120) (PMID:33334825) (PMCID:PMC7778261)

2020

Loveridge, C. J. et al. (2020) BRF1 accelerates prostate tumourigenesis and perturbs immune infiltration. Oncogene, 39, pp. 1797-1806. (doi: 10.1038/s41388-019-1106-x) (PMID:31740786) (PMCID:PMC7033044)

2019

Liko, D. et al. (2019) Brf1 loss and not overexpression disrupts tissues homeostasis in the intestine, liver and pancreas. Cell Death and Differentiation, 26(12), pp. 2535-2550. (doi: 10.1038/s41418-019-0316-7) (PMID:30858608) (PMCID:PMC6861133)

Schmidt, S. et al. (2019) A MYC/GCN2/eIF2α negative feedback loop limits protein synthesis to prevent MYC-dependent apoptosis in colorectal cancer. Nature Cell Biology, 21, pp. 1413-1424. (doi: 10.1038/s41556-019-0408-0) (PMID:31685988) (PMCID:PMC6927814)

2018

Warren, S. C. et al. (2018) Removing physiological motion from intravital and clinical functional imaging data. eLife, 7, e35800. (doi: 10.7554/elife.35800) (PMID:29985127) (PMCID:PMC6037484)

Woroniuk, A. et al. (2018) STEF/TIAM2-mediated Rac1 activity at the nuclear envelope regulates the perinuclear actin cap. Nature Communications, 9, 2124. (doi: 10.1038/s41467-018-04404-4) (PMID:29844364) (PMCID:PMC5974301)

2017

Nobis, M. et al. (2017) A RhoA-FRET biosensor mouse for intravital imaging in normal tissue homeostasis and disease contexts. Cell Reports, 21, pp. 274-288. (doi: 10.1016/j.celrep.2017.09.022) (PMID:28978480)

Hock, A. K. et al. (2017) Development of an inducible mouse model of iRFP713 to track recombinase activity and tumour development in vivo. Scientific Reports, 7, 1837. (doi: 10.1038/s41598-017-01741-0) (PMID:28500323) (PMCID:PMC5431786)

van de Lagemaat, L. N., Stanford, L. E., Pettit, C. M., Strathdee, D.J., Strathdee, K.E., Elsegood, K. A., Fricker, D. G., Croning, M. D. R., Komiyama, N. H. and Grant, S. G. N. (2017) Standardized experiments in mutant mice reveal behavioural similarity on 129S5 and C57BL/6J backgrounds. Genes, Brain and Behavior, 16(4), pp. 409-418. (doi: 10.1111/gbb.12364) (PMID:27886459)

2016

Birch, J. et al. (2016) The initiator methionine tRNA drives cell migration and invasion leading to increased metastatic potential in melanoma. Biology Open, 5(10), pp. 1371-1379. (doi: 10.1242/bio.019075) (PMID:27543055) (PMCID:PMC5087684)

Walton, J. et al. (2016) CRISPR/Cas9-mediated Trp53 and Brca2 knockout to generate improved murine models of ovarian high grade serous carcinoma. Cancer Research, 76(20), pp. 6118-6129. (doi: 10.1158/0008-5472.CAN-16-1272) (PMID:27530326) (PMCID:PMC5802386)

Tyrrell, B. J., Woodham, E. F., Spence, H. J., Strathdee, D., Insall, R. H. and Machesky, L. M. (2016) Loss of strumpellin in the melanocytic lineage impairs the WASH Complex but does not affect coat colour. Pigment Cell and Melanoma Research, 29(5), pp. 559-571. (doi: 10.1111/pcmr.12506) (PMID:27390154) (PMCID:PMC5082549)

Steele, C. W. et al. (2016) CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell, 29(6), pp. 832-845. (doi: 10.1016/j.ccell.2016.04.014) (PMID:27265504) (PMCID:PMC4912354)

Boulay, P.-L. et al. (2016) Rab11-FIP1C Is a critical negative regulator in ErbB2-mediated mammary tumor progression. Cancer Research, 76(9), pp. 2662-2674. (doi: 10.1158/0008-5472.CAN-15-2782) (PMID:26933086)

Clarke, C. J. et al. (2016) The initiator methionine tRNA drives secretion of type II collagen from stromal fibroblasts to promote tumor growth and angiogenesis. Current Biology, 26(6), pp. 755-765. (doi: 10.1016/j.cub.2016.01.045) (PMID:26948875) (PMCID:PMC4819511)

Erami Rud Majani, Z. et al. (2016) Intravital FRAP imaging using an E-cadherin-GFP mouse reveals disease- and drug-dependent dynamic regulation of cell-cell junctions in live tissue. Cell Reports, 14(1), pp. 152-167. (doi: 10.1016/j.celrep.2015.12.020) (PMID:26725115)

2015

Cadalbert, L.C., Ghaffar, F.N., Stevenson, D., Bryson, S., Vaz, F.M., Gottlieb, E. and Strathdee, D. (2015) Mouse tafazzin is required for male germ cell meiosis and spermatogenesis. PLoS ONE, 10(6), e0131066. (doi: 10.1371/journal.pone.0131066) (PMID:26114544) (PMCID:PMC4483168)

Cardaci, S. et al. (2015) Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis. Nature Cell Biology, 17, pp. 1317-1326. (doi: 10.1038/ncb3233) (PMID:26302408) (PMCID:PMC4591470)

2013

Schachtner, H., Li, A., Stevenson, D., Calaminus, S. D.J., Thomas, S. G., Watson, S. P., Sixt, M., Wedlich-Soldner, R., Strathdee, D. and Machesky, L. M. (2013) Tissue inducible Lifeact expression allows visualization of actin dynamics in vivo and ex vivo. European Journal of Cell Biology, 91(11-12), pp. 923-929. (doi: 10.1016/j.ejcb.2012.04.002)

Cheung, E.C., Athineos, D., Lee, P., Ridgway, R.A., Lambie, W., Nixon, C., Strathdee, D., Blyth, K. , Sansom, O.J. and Vousden, K.H. (2013) TIGAR is required for efficient intestinal regeneration and tumorigenesis. Developmental Cell, 25(5), pp. 463-477. (doi: 10.1016/j.devcel.2013.05.001)

Strathdee, D. and Whitelaw, C.B.A. (2013) TT2013 meeting report: the transgenic technology meeting visits Asia for the first time. Transgenic Research, 22(3), pp. 667-671. (doi: 10.1007/s11248-013-9710-y)

2012

Cheung, E. C., Athineos, D., Ridgway, R., Blyth, K. , Strathdee, D., Sansom, O. and Vousden, K. H. (2012) The in vivo function of the p53 target gene TIGAR. BMC Proceedings, 6, P12. (doi: 10.1186/1753-6561-6-S3-P12) (PMCID:PMC3395062)

This list was generated on Tue Sep 17 07:38:24 2024 BST.
Jump to: Articles
Number of items: 31.

Articles

Perera, G., Power, L., Larson, A., Codden, C. J., Awata, J., Batorsky, R., Strathdee, D. and Chin, M. T. (2023) Single cell transcriptomic analysis in a mouse model of Barth syndrome reveals cell-specific alterations in gene expression and intercellular communication. International Journal of Molecular Sciences, 24(14), 11594. (doi: 10.3390/ijms241411594) (PMID:37511352) (PMCID:PMC10380964)

Flanagan, D. J. et al. (2022) Epithelial TGFβ engages growth-factor signalling to circumvent apoptosis and drive intestinal tumourigenesis with aggressive features. Nature Communications, 13, 7551. (doi: 10.1038/s41467-022-35134-3) (PMID:36477656) (PMCID:PMC9729215)

Baudot, A. D. et al. (2022) Glycan degradation promotes macroautophagy. Proceedings of the National Academy of Sciences of the United States of America, 119(26), e211150611. (doi: 10.1073/pnas.2111506119) (PMID:35737835)

Humpton, T. J. et al. (2022) A noninvasive iRFP713 p53 reporter reveals dynamic p53 activity in response to irradiation and liver regeneration in vivo. Science Signaling, 15(720), eabd9099. (doi: 10.1126/scisignal.abd9099) (PMID:35133863) (PMCID:PMC7612476)

Leach, J. D.G. et al. (2021) Oncogenic BRAF, unrestrained by TGFβ-receptor signalling, drives right-sided colonic tumorigenesis. Nature Communications, 12, 3464. (doi: 10.1038/s41467-021-23717-5) (PMID:34103493) (PMCID:PMC8187652)

Gudiño, V. et al. (2021) RAC1B modulates intestinal tumourigenesis via modulation of WNT and EGFR signalling pathways. Nature Communications, 12, 2335. (doi: 10.1038/s41467-021-22531-3) (PMID:33879799) (PMCID:PMC8058071)

Swaminathan, K., Campbell, A., Papalazarou, V., Jaber-Hijazi, F. , Nixon, C., McGhee, E., Strathdee, D., Sansom, O. J. and Machesky, L. M. (2021) The RAC1 target NCKAP1 plays a crucial role in the progression of Braf;Pten-driven melanoma in mice. Journal of Investigative Dermatology, 141(3), 628-637.e15. (doi: 10.1016/j.jid.2020.06.029) (PMID:32777214)

Najumudeen, A. K. et al. (2021) The amino acid transporter SLC7A5 is required for efficient growth of KRAS-mutant colorectal cancer. Nature Genetics, 53, pp. 16-26. (doi: 10.1038/s41588-020-00753-3) (PMID:33414552)

Pickering, K.A. et al. (2021) A RAC-GEF network critical for early intestinal tumourigenesis. Nature Communications, 12, 56. (doi: 10.1038/s41467-020-20255-4) (PMID:33397922) (PMCID:PMC7782582)

Humpton, T. J. et al. (2021) Differential requirements for MDM2 E3 activity during embryogenesis and in adult mice. Genes and Development, 35(1-2), pp. 117-132. (doi: 10.1101/gad.341875.120) (PMID:33334825) (PMCID:PMC7778261)

Loveridge, C. J. et al. (2020) BRF1 accelerates prostate tumourigenesis and perturbs immune infiltration. Oncogene, 39, pp. 1797-1806. (doi: 10.1038/s41388-019-1106-x) (PMID:31740786) (PMCID:PMC7033044)

Liko, D. et al. (2019) Brf1 loss and not overexpression disrupts tissues homeostasis in the intestine, liver and pancreas. Cell Death and Differentiation, 26(12), pp. 2535-2550. (doi: 10.1038/s41418-019-0316-7) (PMID:30858608) (PMCID:PMC6861133)

Schmidt, S. et al. (2019) A MYC/GCN2/eIF2α negative feedback loop limits protein synthesis to prevent MYC-dependent apoptosis in colorectal cancer. Nature Cell Biology, 21, pp. 1413-1424. (doi: 10.1038/s41556-019-0408-0) (PMID:31685988) (PMCID:PMC6927814)

Warren, S. C. et al. (2018) Removing physiological motion from intravital and clinical functional imaging data. eLife, 7, e35800. (doi: 10.7554/elife.35800) (PMID:29985127) (PMCID:PMC6037484)

Woroniuk, A. et al. (2018) STEF/TIAM2-mediated Rac1 activity at the nuclear envelope regulates the perinuclear actin cap. Nature Communications, 9, 2124. (doi: 10.1038/s41467-018-04404-4) (PMID:29844364) (PMCID:PMC5974301)

Nobis, M. et al. (2017) A RhoA-FRET biosensor mouse for intravital imaging in normal tissue homeostasis and disease contexts. Cell Reports, 21, pp. 274-288. (doi: 10.1016/j.celrep.2017.09.022) (PMID:28978480)

Hock, A. K. et al. (2017) Development of an inducible mouse model of iRFP713 to track recombinase activity and tumour development in vivo. Scientific Reports, 7, 1837. (doi: 10.1038/s41598-017-01741-0) (PMID:28500323) (PMCID:PMC5431786)

van de Lagemaat, L. N., Stanford, L. E., Pettit, C. M., Strathdee, D.J., Strathdee, K.E., Elsegood, K. A., Fricker, D. G., Croning, M. D. R., Komiyama, N. H. and Grant, S. G. N. (2017) Standardized experiments in mutant mice reveal behavioural similarity on 129S5 and C57BL/6J backgrounds. Genes, Brain and Behavior, 16(4), pp. 409-418. (doi: 10.1111/gbb.12364) (PMID:27886459)

Birch, J. et al. (2016) The initiator methionine tRNA drives cell migration and invasion leading to increased metastatic potential in melanoma. Biology Open, 5(10), pp. 1371-1379. (doi: 10.1242/bio.019075) (PMID:27543055) (PMCID:PMC5087684)

Walton, J. et al. (2016) CRISPR/Cas9-mediated Trp53 and Brca2 knockout to generate improved murine models of ovarian high grade serous carcinoma. Cancer Research, 76(20), pp. 6118-6129. (doi: 10.1158/0008-5472.CAN-16-1272) (PMID:27530326) (PMCID:PMC5802386)

Tyrrell, B. J., Woodham, E. F., Spence, H. J., Strathdee, D., Insall, R. H. and Machesky, L. M. (2016) Loss of strumpellin in the melanocytic lineage impairs the WASH Complex but does not affect coat colour. Pigment Cell and Melanoma Research, 29(5), pp. 559-571. (doi: 10.1111/pcmr.12506) (PMID:27390154) (PMCID:PMC5082549)

Steele, C. W. et al. (2016) CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell, 29(6), pp. 832-845. (doi: 10.1016/j.ccell.2016.04.014) (PMID:27265504) (PMCID:PMC4912354)

Boulay, P.-L. et al. (2016) Rab11-FIP1C Is a critical negative regulator in ErbB2-mediated mammary tumor progression. Cancer Research, 76(9), pp. 2662-2674. (doi: 10.1158/0008-5472.CAN-15-2782) (PMID:26933086)

Clarke, C. J. et al. (2016) The initiator methionine tRNA drives secretion of type II collagen from stromal fibroblasts to promote tumor growth and angiogenesis. Current Biology, 26(6), pp. 755-765. (doi: 10.1016/j.cub.2016.01.045) (PMID:26948875) (PMCID:PMC4819511)

Erami Rud Majani, Z. et al. (2016) Intravital FRAP imaging using an E-cadherin-GFP mouse reveals disease- and drug-dependent dynamic regulation of cell-cell junctions in live tissue. Cell Reports, 14(1), pp. 152-167. (doi: 10.1016/j.celrep.2015.12.020) (PMID:26725115)

Cadalbert, L.C., Ghaffar, F.N., Stevenson, D., Bryson, S., Vaz, F.M., Gottlieb, E. and Strathdee, D. (2015) Mouse tafazzin is required for male germ cell meiosis and spermatogenesis. PLoS ONE, 10(6), e0131066. (doi: 10.1371/journal.pone.0131066) (PMID:26114544) (PMCID:PMC4483168)

Cardaci, S. et al. (2015) Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis. Nature Cell Biology, 17, pp. 1317-1326. (doi: 10.1038/ncb3233) (PMID:26302408) (PMCID:PMC4591470)

Schachtner, H., Li, A., Stevenson, D., Calaminus, S. D.J., Thomas, S. G., Watson, S. P., Sixt, M., Wedlich-Soldner, R., Strathdee, D. and Machesky, L. M. (2013) Tissue inducible Lifeact expression allows visualization of actin dynamics in vivo and ex vivo. European Journal of Cell Biology, 91(11-12), pp. 923-929. (doi: 10.1016/j.ejcb.2012.04.002)

Cheung, E.C., Athineos, D., Lee, P., Ridgway, R.A., Lambie, W., Nixon, C., Strathdee, D., Blyth, K. , Sansom, O.J. and Vousden, K.H. (2013) TIGAR is required for efficient intestinal regeneration and tumorigenesis. Developmental Cell, 25(5), pp. 463-477. (doi: 10.1016/j.devcel.2013.05.001)

Strathdee, D. and Whitelaw, C.B.A. (2013) TT2013 meeting report: the transgenic technology meeting visits Asia for the first time. Transgenic Research, 22(3), pp. 667-671. (doi: 10.1007/s11248-013-9710-y)

Cheung, E. C., Athineos, D., Ridgway, R., Blyth, K. , Strathdee, D., Sansom, O. and Vousden, K. H. (2012) The in vivo function of the p53 target gene TIGAR. BMC Proceedings, 6, P12. (doi: 10.1186/1753-6561-6-S3-P12) (PMCID:PMC3395062)

This list was generated on Tue Sep 17 07:38:24 2024 BST.