Postgraduate research 

Cell Engineering PhD/iPhD/MSc (Research)

Start dates for incoming postgraduate research students

1 October 2020 is the preferred date to start your PhD [or the date on your offer letter].

We will run a full on-line induction and training programme that may be taken remotely for the first month. Most of our doctoral researcher training programme will also be available online and we will offer many remote opportunities to help you become part of the Graduate School and wider University community.  

Research that involves laboratory work may start following the completion of induction (all labs are currently up and running).

Some types of research (such as non-laboratory work) and supervision can be carried out entirely remotely and this may be the most appropriate way for you to work at the moment.  Contact your supervisor, if you believe this applies to your research to discuss requirements for home/remote working. You may also require the agreement of the subject, school or institute convener if you wish to carry out your PhD remotely for a fixed period. You may not continue remotely unless an adequate plan is agreed to ensure sufficient work can be undertaken prior to starting the experimental work. It is important that starting remotely does not affect the overall PhD timescale.

Delayed start dates

We understand there may be good reasons to delay:

  • If it is necessary to travel to Glasgow to begin your research, but there are restrictions preventing travel at this time, then a delay to 5 January 2021 is encouraged [when we will run full on-line induction and training programme]. You may also delay to another start time with the agreement of your supervisor and Graduate School.
  • For subjects where laboratory work is required to commence immediately following on-line induction and training and you are unable to come to Glasgow, you should consider delaying your start-date. Contact your supervisor or the Graduate School in this instance.
  • If your research involves objects, artefacts, archives or fieldwork, you should discuss this with your supervisor. Some kinds of work may be able to be started remotely; in other cases, it may be advisable to delay the start-date.
  • External government sponsors may prefer a delay and the University is happy to support this.

From our point of view, there is no disadvantage in deferring your PhD to a later agreed start date. Scholarship holders should check that this can still be provided with a delayed start.

Office and study space

At present, current staff and research students are not using office spaces on campus. We do not have a confirmed date for the return to office use, but all work that can be undertaken off-campus (ie is not lab-based) should be done at home or remotely at present.

Some study spaces are becoming available on campus with a booking system in place, such as the postgraduate study space in the University Library.

International/EU students remotely starting a funded PhD

You should check with your funder that you can be paid a stipend if you are not in the UK. If you are in receipt of a scholarship, you should contact the Graduate School for advice on opening a bank account to allow stipend payments.

Bacteria or virus spheres

We are focused on fostering education and training in research to develop microenvironments to investigate and instruct cellular behaviour including, but not solely, stem cell differentiation. Our cell engineering research covers topics such as protein folding in the secretory pathway, regulation of membrane traffic, control of cell cycle, cytokinesis, compartmentalization of cellular signalling and cell engineering.

Research projects

Self-funded PhD opportunities

Defining the mechanism of abscission

Outline & aim

ESCRT proteins mediate membrane scission events involved in the down-regulation of ubiquitin-labelled receptors via the multivesicular body (MVB) pathway and in HIV budding from host cells. In addition, ESCRT proteins play a role in abscission, the final stage of cytokinesis. The ESCRT machinery is composed of four complexes: ESCRT-0, -I, -II and -III; and the modular composition of the ESCRT machinery is reflected in its various functions. At a precise time during cytokinesis, the ESCRT-I protein TSG101 and ESCRT-associated protein ALIX are recruited to the midbody through interactions with CEP55; TSG101 and ALIX in turn recruit ESCRT-III components. Thereafter, by a mechanism still not completely understood, ESCRT-III redistributes to the putative abscission sites, microtubules are severed and the daughter cells separate. However, the mechanisms by which this selective and specific redistribution of ESCRT proteins is regulated in space and time remain largely unsolved.

ESCRT components are phosphoproteins, so we reasoned that kinases and phosphatases are likely candidates for ESCRT regulation. We hypothesised that polo and aurora kinases and Cdc14 phosphatase may be potential regulators of ESCRT function due to their significant roles in controlling cytokinesis. This aspect of mitotic regulation of

ESCRT function will be investigated in this project, as we have shown that these kinases and phosphatases play a role; our challenge now is to define that role and to determine whether similar mechanisms operate in mammalian cells. This interface between signalling and trafficking is an important and active research theme worldwide, and you will join an active and collaborative group well versed in all the training aspects required for successful completion of a PhD.

The aim of the project is to define the role of aurora kinase, polo-like kinase and Cdc14 on ESCRT function in yeast and mammalian cells.


Yeast genetics; molecular biology; mammalian cell culture and cell biology; high resolution imaging/confocal microscopy


  • M.S.Bhutta, B.Roy, G.W.Gould and C.J.McInerny Public Library of Science 1. (2014) In press. “Control of cytokinesis by polo and aurora kinases and Cdc14 phosphatase regulation of ESCRT proteins.”
  • H.Neto, A.Kaupisch, L.L.Collins and G.W.Gould. Molecular Biology of the Cell (2013) 24, 3633-3674. “Syntaxin 16 is required for early stages in cytokinesis.”


Developing novel, combined strategies for peripheral nerve repair

Outline & aim

Peripheral nerve injuries are frequently seen following trauma or malignancy, with an incidence of 300000 cases in Europe following trauma alone. These injuries often result in functional deficits, and have a high impact on the patient’s quality of life, as well as placing a heavy financial burden on the state. Despite advances in surgical treatments, motor and sensory recovery following these injuries often remains incomplete. Here we help develop materials and apply a variety of biophysical techniques ranging from ultrasonic manipulation to 3D micro fabrication and microfluidics to create artificial guidance tubes, or tissues, that aid in nerve repair, with the aim of improving and assisting the outcome of surgical nerve repair.

The materials and devices are tested in vitro using a variety of models for peripheral and central nerve repair. The projects available range from basic materials science in collaboration with chemists (Prof G Cooke, Dr R Hartley, Prof M Salmeron-Sanchez), engineers for active nerve stimulation (Prof D Cumming) acoustic placement (Prof Cummings & Dr A Bernassau), microfluidics (Dr H Yin), to applied models (Prof A Hart). The implications of the different repair strategies on the cells genomic and proteomic response is being investigated in collaboration with the Glasgow Polyomics Facility (Dr R Burchmore, P Herzyk). This work is very much interdisciplinary, and adventurous, and requires not only a good foundation in basic molecular and cell biology, but also a willingness to learn the language and science of chemists, materials scientists, engineers and surgeons.

The project will vary depending on the applicants abilities and specific interests, the techniques and supervisors mentioned below are those with whom Dr Riehle collaborates.


Primary cell culture, molecular biology, imaging, image analysis, then depending on the specific project collaboration with engineers, chemists or physicists to make materials - synthetic organic chemistry - micro fabrication - electronic engineering - acoustic engineering.


  • Cortese, B., Gigli, G., & Riehle, M. (2009). Mechanical Gradient Cues for Guided Cell Motility and Control of Cell Behavior on Uniform Substrates. Advanced Functional Materials, 19(18), 2961–2968
  • Donoghue, P. S., Sun, T., Gadegaard, N., Riehle, M. O., & Barnett, S. C. (2013). Development of a Novel 3D Culture System for Screening Features of a Complex Implantable Device for CNS Repair. Molecular Pharmaceutics. doi:10.1021/mp400526n
  • Caldwell, S. T., Maclean, C., Riehle, M., Cooper, A., Nutley, M., Rabani, G., … Cooke, G. (2014). Protein-mediated dethreading of a biotin-functionalised pseudorotaxane. Organic & Biomolecular Chemistry, 12(3), 511–6. doi:10.1039/c3ob41612g
  • Gesellchen, F., Bernassau, a L., Déjardin, T., Cumming, D. R. S., & Riehle, M. O. (2014). Cell patterning with a heptagon acoustic tweezer - application in neurite guidance. Lab on a Chip, 19, 2266–2275. doi:10.1039/c4lc00436a
  • Martin, C., Dejardin, T., Hart, A., Riehle, M. O., & Cumming, D. R. S. (2013). Directed Nerve Regeneration Enabled by Wirelessly Powered Electrodes Printed on a Biodegradable Polymer. Advanced Healthcare Materials, 1–6. doi:10.1002/adhm.201300481
  • Nikukar, H., Reid, S., Tsimbouri, P. M., Riehle, M. O., Curtis, A. S. G., & Dalby, M. J. (2013). Osteogenesis of mesenchymal stem cells by nanoscale mechanotransduction. ACS Nano, 7(3), 2758–67. doi:10.1021/nn400202j



Molecular mechanics of clustering and gating in plant ion channels

Outline & aim

The organisation of ion channels in eukaryotic membranes is intimately connected with their activity, but the mechanics of the connections are, in general, poorly understood. Both in animals and plant, many ion channels assemble in discrete clusters that localise within the surface of the cell membrane. The clustering of the GORK channel — responsible for potassium efflux for stomatal regulation in the model plant Arabidopsis — is intimately connected with its gating by extracellular K+. Recent work from this laboratory yielded new insights into the processes linking K+ binding within the GORK channel pore to clustering of the channel proteins.

This project will explore the physical structure of GORK that determines its self-interaction as a function of the K+ concentration with the aim of understanding its integration with the well-known mechanics of channel gating.


The student will gain expertise in molecular biological methods, and a deep grounding in the concepts of membrane transport, cell biology and physiology. Skills training will include in-depth engagement in molecular biology, protein biochemistry and molecular genetic/protein design, single-cell imaging and fluorescence microscopy, and single-cell recording techniques of electrophysiology using heterologous expression in mammalian cell systems and in plants.


  • Lefoulon, et al. (2014) Plant Physiol 166, 950-75
  • Eisenach, et al. (2012) Plant J 69, 241-51
  • Dreyer & Blatt (2009) Trends Plant Sci 14, 383-90


Photoregulation of plant hormone trafficking and signalling

Outline & aim

The phytohormone auxin (indole acetic acid) is instrumental for directing and shaping plant growth and form. Understanding how this chemical growth regulator controls plant development will have important implications for manipulating plant growth for agronomic gain. Auxin trafficking is profoundly influenced by many abiotic factors, including light. For instance, phototropin receptor kinases (phot1 and phot2) function to redirect auxin fluxes that are required to reorientate plant growth toward or away from light. The phot1-interacting protein Non-Phototropic Hypocotyl 3 (NPH3) is essential for establishing these light-driven auxin movements. However, the mode of action of NPH3 and how it functions to regulate transporter activity remains poorly understood.

This project aims to spatially dissect the site(s) of NPH3 action and how it impacts the subcellular trafficking and function of known auxin transporter proteins implicated in phototropism. Work is also focussed on characterising a newly identified NPH3 protein (NPH3-like, NPH3L) that interacts directly with phot1. Functional characterisation of NPH3, NPH3L and its homologues will provide new insights into the photoregulation of auxin trafficking and signalling associated with phototropism and other phototropin-mediated responses.


This proposal is focused on characterising the molecular processes that integrate light and phytohormone signalling, two important agronomic processes associated with manipulating plant growth and optimising photosynthetic efficiency. Both these research areas fall squarely within the strategic priorities of Food Security, Living with Environmental Change and Crop Science. The project will provide excellent training in a range of techniques associated with molecular biology, cell biology, genetics and biochemistry. Training will also be given in key skills including teaching, project-management and science communication. Additionally, the student will have the opportunity to attend and present their research at the international photobiology meetings e.g. Gordon Research Conference in Photosensory Receptors and Signal Transduction, Galveston, Texas in 2016 (which I will chair).


  • CHRISTIE, J.M. (2007) Phototropin blue-light receptors. Annu. Rev. Plant Biol. 58, 21-45.
  • Sullivan, S., Thomson, C.E., Kaiserli, E. and Christie J.M. (2009) Interaction specificity of Arabidopsis 14-3-3 proteins and phototropin receptor kinases. FEBS Lett. 583, 2187-2193.
  • Christie, J.M., Richter, G., Yang, H., Sullivan, S., Thomson, C.E., Lin, J., Tiapiwatanakun, B., Ennis, M. Kaiserli, E., Lee, O.R., Adamec, J., Peer, W.A. and Murphy, A.S. (2011) Phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism. PLoS Biol., 9(6): e1001076.
  • CHRISTIE, J.M. and MURPHY, A.S. (2013) Shoot phototropism in higher plants: New light through old concepts. Am. J. Bot. 100, 35-46.


Regulation of plant nuclear architecture by light

Outline & aim

Light is essential for plant growth, development and photoprotection. One of the primary sites where light regulates major cellular processes is the nucleus. We are interested in elucidating how light stimulates the accumulation of photoreceptors and signalling components in nuclear micro-domains to regulate gene expression, chromatin remodelling and DNA damage repair. The student will investigate how nuclear compartmentalisation correlates with changes in the expression of growth promoting genes in response to light.


A series of approaches will be used depending on the interests and background of the applicant: Gene expression analysis (qRT-PCR, ChIP), molecular cloning, protein interactions studies (Y2H, co-immunoprecipitation), protein characterisation (heterologous expression and purification), cell biology (confocal microscopy), plant genetics and plant physiology.




The Centre for the Cellular Microenvironment at Glasgow is a new entity (2018) arising from the merger of the Centre for Cell Engineering (CCE) and the Microenvironments for Medicine (MiMe).

Our goal is to apply the knowledge gained from our research to address key issues affecting (stem) cell biology. Our research is centred on exploring how cells respond to their environment by changes in behaviour, differentiation, metabolism and various aspects of development. 

The Centre for the Cellular Microenvironment at Glasgow adopts an interdisciplinary approach across the Institute of Molecular, Cell & Systems Biology (MCSB) in the College of Medical, Veterinary & Life Sciences and the Bioengineering Group in the School of Engineering, which is part of the College of Science & Engineering. Cell-environment interactions, cell signalling, stem cell biology, cell, and protein structure and function at interfaces, bioengineering of gene regulation by microenvironments, nanoparticle technologies, synthetic biology to guide cell adhesion, cell sorting and translational approaches to take finding to clinical application.

Research topics are allied to ongoing research within the Centre for the Cellular Microenvironment. Some projects are related to basic science and other projects are more focused on translational aspects of our research, but all projects integrate with our existing research themes. A variety of multidisciplinary research approaches are applied within these research programmes, including biomedical engineering, protein engineering, biochemistry, molecular biology, biophysics, polyomics (genomics, transcriptomics, proteomics, metabolomics), biomaterials, bioinformatics and synthetic biology, as well as cellular imaging of biological functions.

Specific areas of interest include:

  • bioengineering the microenvironment
  • engineering approaches to control gene expression
  • bio-engineered interfaces
  • biomaterials, scaffolds and 3D printing
  • protein structure and function
  • protein engineering and application
  • cell sorting and characterisation
  • stem cell maintenance and differentiation
  • nanoparticles for theranostics

Specific areas of application are:

  • bone repair
  • nerve repair
  • sourcing of rare cells
  • blood Brain Barrier
  • mesenchymal stem cell niche
  • haematopoietic stem cell niche

See Glasgow Biomaterials Seminar for an idea about recent and current projects.

Our PhD programme provides excellent training in cutting edge technologies that will be applicable to career prospects in both academia and industry. Many of our graduates become postdoctoral research associates (Canada, USA, Europe and UK) while others go on to take up positions within industry either locally (e.g. Collagen Solutions, BioGelX) or overseas (e.g. Medtronic). We have strong national and international connections with many academic and industrial collaborators. Funds are available through the College of Medical, Veterinary & Life Sciences or the College of Science & Engineering (depending on primary alignment) to allow visits to international laboratories, or industry where part of your project can be carried out. This provides an excellent opportunity for networking and increasing your scientific knowledge and skill set.

Study options


  • Duration: 3/4 years full-time; 5 years part-time

Individual research projects are tailored around the expertise of principal investigators.

MSc (Research)

  • Duration: 1 year full-time; 2 years part-time

Integrated PhD programmes (5 years)

Our integrated PhD allows you to combine Masters level teaching with your chosen research direction in a 1+3+1 format. 

International students with MSc and PhD scholarships/funding do not have to apply for 2 Visas or exit and re-enter the country between programmes. International and UK/EU students may apply if your Masters was awarded a few years ago.

Year 1

Taught masters level modules are taken alongside students on our masters programmes. Our research-led teaching supports you to fine tune your research ideas and discuss these with potential PhD supervisors. You will gain a valuable introduction to academic topics, research methods, laboratory skills and the critical evaluation of research data. Your grades must meet our requirements in order to gain entry on to a PhD research programme. If not, you will receive the Masters degree only.

Years 2, 3 and 4

PhD programme with research/lab work, completing an examinable piece of independent research in year 4.

Year 5

Thesis write up.

All applicants must have full funding before starting their iPhD programme.

Entry requirements

Awarded or expected First-class or high Upper Second-class BSc degree.

English Language requirements for applicants whose first language is not English.

Fees and funding



  • UK fee to be confirmed by (2020/21 fee was £4,407)
  • International & EU: £23,000

Prices are based on the annual fee for full-time study. Fees for part-time study are half the full-time fee.

Additional fees for all students:

  • Re-submission by a research student £540
  • Submission for a higher degree by published work £1,355
  • Submission of thesis after deadline lapsed £350
  • Submission by staff in receipt of staff scholarship £790

Depending on the nature of the research project, some students will be expected to pay a bench fee (also known as research support costs) to cover additional costs. The exact amount will be provided in the offer letter.

Alumni discount

We offer a 10% discount to our alumni on all Postgraduate Research and full Postgraduate Taught Masters programmes. This includes University of Glasgow graduates and those who have completed Junior Year Abroad, Exchange programme or International Summer School with us. The discount is applied at registration for students who are not in receipt of another discount or scholarship funded by the University. No additional application is required.


2020/21 fees

  • £4,407 UK/EU
  • £21,920 outside EU

Prices are based on the annual fee for full-time study. Fees for part-time study are half the full-time fee.

Additional fees for all students:

  • Re-submission by a research student £525
  • Submission for a higher degree by published work £1,315
  • Submission of thesis after deadline lapsed £340
  • Submission by staff in receipt of staff scholarship £765

Depending on the nature of the research project, some students will be expected to pay a bench fee (also known as research support costs) to cover additional costs. The exact amount will be provided in the offer letter.

Alumni discount

We offer a 20% discount to our alumni commencing study in Academic session 2020/21, on all Postgraduate Research and full Postgraduate Taught Masters programmes. This includes University of Glasgow graduates and those who have completed a Study Abroad programme or the Erasmus Programme at the University of Glasgow. This discount can be awarded alongside other University scholarships. 

Funding for EU students

The Scottish Government has confirmed that fees for EU students commencing their studies 2020/21 will be at the same level as those for UK student.





We offer a wide range of cutting-edge research facilities, including core facilities in:

  • fluorescence activated cell sorting analysis
  • cell imaging and biophysical techniques, including NMR
  • protein characterization that consists of state of the art machinery for analysing protein structure and interactions
  • mass spectrometry
  • next generation sequencing

Our research spaces are state-of-the-art and span three buildings. Notably, The Centre for Cell Engineering is a collaboration between biologists, physical scientists, engineers and clinicians aiming to understand the cell / material interface and the micro / nano scale. In addition to increasing understanding of fundamental cell biology to new nano and micro material, the Centre aims to translate cutting-edge science to clinic. 

Through their research interests in drug development, biotechnology and clinical applications, many of our project supervisors have strong links with industry. We also have strong academic conections with many international collaborators in universities and research institutes. Funds are available through the collage of MVLS to allow visits to international laboratories where part of your project can be carried out. This provides an excellent opportunity for networking and increasing your scientific knowledge and skill set.

Graduate School

The College of Medical, Veterinary & Life Sciences Graduate School provides a vibrant, supportive and stimulating environment for all our postgraduate students. We aim to provide excellent support for our postgraduates through dedicated postgraduate convenors, highly trained supervisors and pastoral support for each student.
Our overarching aim is to provide a research training environment that includes:

  • provision of excellent facilities and cutting edge techniques
  • training in essential research and generic skills
  • excellence in supervision and mentoring
  • interactive discussion groups and seminars
  • an atmosphere that fosters critical cultural policy and research analysis
  • synergy between research groups and areas
  • extensive multidisciplinary and collaborative research
  • extensive external collaborations both within and beyond the UK 
  • a robust generic skills programme including opportunities in social and commercial training

How to apply

Identify potential supervisors

All Postgraduate Research Students are allocated a supervisor who will act as the main source of academic support and research mentoring. You may want to identify a potential supervisor and contact them to discuss your research proposal before you apply. Please note, even if you have spoken to an academic staff member about your proposal you still need to submit an online application form.

You can find relevant academic staff members with our staff research interests search.

Gather your documents

Before applying please make sure you gather the following supporting documentation:

  1. Final or current degree transcripts including grades (and an official translation, if needed) – scanned copy in colour of the original document
  2. Degree certificates (and an official translation, if needed): scanned copy in colour of the original document
  3. Two references on headed paper (academic and/or professional).
  4. Research proposal, CV, samples of written work as per requirements for each subject area.

Submitting References

To complete your application we will need two references (one must be academic the other can be academic or professional).

There are two options for you to submit references as part of your application.  You can upload a document as part of your application or you can enter in your referee’s contact details and we will contact them to request a reference.

Option 1 – Uploading as part of the application form

Your references should be on official headed paper. These should also be signed by the referee. You can then upload these via theOnline Application form with the rest your documents to complete the application process.

Please be aware that documents must not exceed 5MB in size and therefore you may have to upload your documents separately. The online system allow you to upload supporting documents only in PDF format. For a free PDF writer go to

Option 2 - Entering contact details as part of the application form

If you enter your referees contact details including email on the application form we will email them requesting they submit a reference once you have submitted the application form.  When the referee responds and sends a reference you will be sent an email to confirm the university has received this.

After submitting your application form

Use our Applicant Self Service uploading documents function to submit a new reference. We can also accept confidential references direct to, from the referee’s university or business email account.  

Apply now

I've applied. What next?

If you have any other trouble accessing Applicant Self-Service, please see Application Troubleshooting/FAQs. 

Contact us

Before you apply

PhD/MSc/MD: email

iPhD: email

After you have submitted your application

PhD/MSc/MD/iPhD: contact our Admissions team

Any references may be submitted by email to: