Postgraduate research 

Cell Engineering PhD/iPhD/MSc (Research)

Bacteria or virus spheres

We are focused on fostering education and training in research to develop microenvironments to investigate and instruct cellular behaviour including, but not solely, stem cell differentiation. Our cell engineering research covers topics such as protein folding in the secretory pathway, regulation of membrane traffic, control of cell cycle, cytokinesis, compartmentalisation of cellular signalling and cell engineering.

  • PhD: 3-4 years full-time; 5 years part-time;
  • MSc (Research): 1 year full-time; 2 years part-time;
  • IPhD: 5 years full-time;

Research projects


Defining the mechanism of abscission

Outline & aim

ESCRT proteins mediate membrane scission events involved in the down-regulation of ubiquitin-labelled receptors via the multivesicular body (MVB) pathway and in HIV budding from host cells. In addition, ESCRT proteins play a role in abscission, the final stage of cytokinesis. The ESCRT machinery is composed of four complexes: ESCRT-0, -I, -II and -III; and the modular composition of the ESCRT machinery is reflected in its various functions. At a precise time during cytokinesis, the ESCRT-I protein TSG101 and ESCRT-associated protein ALIX are recruited to the midbody through interactions with CEP55; TSG101 and ALIX in turn recruit ESCRT-III components. Thereafter, by a mechanism still not completely understood, ESCRT-III redistributes to the putative abscission sites, microtubules are severed and the daughter cells separate. However, the mechanisms by which this selective and specific redistribution of ESCRT proteins is regulated in space and time remain largely unsolved.

ESCRT components are phosphoproteins, so we reasoned that kinases and phosphatases are likely candidates for ESCRT regulation. We hypothesised that polo and aurora kinases and Cdc14 phosphatase may be potential regulators of ESCRT function due to their significant roles in controlling cytokinesis. This aspect of mitotic regulation of

ESCRT function will be investigated in this project, as we have shown that these kinases and phosphatases play a role; our challenge now is to define that role and to determine whether similar mechanisms operate in mammalian cells. This interface between signalling and trafficking is an important and active research theme worldwide, and you will join an active and collaborative group well versed in all the training aspects required for successful completion of a PhD.

The aim of the project is to define the role of aurora kinase, polo-like kinase and Cdc14 on ESCRT function in yeast and mammalian cells.


Yeast genetics; molecular biology; mammalian cell culture and cell biology; high resolution imaging/confocal microscopy


  • M.S.Bhutta, B.Roy, G.W.Gould and C.J.McInerny Public Library of Science 1. (2014) In press. “Control of cytokinesis by polo and aurora kinases and Cdc14 phosphatase regulation of ESCRT proteins.”
  • H.Neto, A.Kaupisch, L.L.Collins and G.W.Gould. Molecular Biology of the Cell (2013) 24, 3633-3674. “Syntaxin 16 is required for early stages in cytokinesis.”




Developing novel, combined strategies for peripheral nerve repair

Outline & aim

Peripheral nerve injuries are frequently seen following trauma or malignancy, with an incidence of 300000 cases in Europe following trauma alone. These injuries often result in functional deficits, and have a high impact on the patient’s quality of life, as well as placing a heavy financial burden on the state. Despite advances in surgical treatments, motor and sensory recovery following these injuries often remains incomplete. Here we help develop materials and apply a variety of biophysical techniques ranging from ultrasonic manipulation to 3D micro fabrication and microfluidics to create artificial guidance tubes, or tissues, that aid in nerve repair, with the aim of improving and assisting the outcome of surgical nerve repair.

The materials and devices are tested in vitro using a variety of models for peripheral and central nerve repair. The projects available range from basic materials science in collaboration with chemists (Prof G Cooke, Dr R Hartley, Prof M Salmeron-Sanchez), engineers for active nerve stimulation (Prof D Cumming) acoustic placement (Prof Cummings & Dr A Bernassau), microfluidics (Dr H Yin), to applied models (Prof A Hart). The implications of the different repair strategies on the cells genomic and proteomic response is being investigated in collaboration with the Glasgow Polyomics Facility (Dr R Burchmore, P Herzyk). This work is very much interdisciplinary, and adventurous, and requires not only a good foundation in basic molecular and cell biology, but also a willingness to learn the language and science of chemists, materials scientists, engineers and surgeons.

The project will vary depending on the applicants abilities and specific interests, the techniques and supervisors mentioned below are those with whom Dr Riehle collaborates.


Primary cell culture, molecular biology, imaging, image analysis, then depending on the specific project collaboration with engineers, chemists or physicists to make materials - synthetic organic chemistry - micro fabrication - electronic engineering - acoustic engineering.


  • Cortese, B., Gigli, G., & Riehle, M. (2009). Mechanical Gradient Cues for Guided Cell Motility and Control of Cell Behavior on Uniform Substrates. Advanced Functional Materials, 19(18), 2961–2968
  • Donoghue, P. S., Sun, T., Gadegaard, N., Riehle, M. O., & Barnett, S. C. (2013). Development of a Novel 3D Culture System for Screening Features of a Complex Implantable Device for CNS Repair. Molecular Pharmaceutics. doi:10.1021/mp400526n
  • Caldwell, S. T., Maclean, C., Riehle, M., Cooper, A., Nutley, M., Rabani, G., … Cooke, G. (2014). Protein-mediated dethreading of a biotin-functionalised pseudorotaxane. Organic & Biomolecular Chemistry, 12(3), 511–6. doi:10.1039/c3ob41612g
  • Gesellchen, F., Bernassau, a L., Déjardin, T., Cumming, D. R. S., & Riehle, M. O. (2014). Cell patterning with a heptagon acoustic tweezer - application in neurite guidance. Lab on a Chip, 19, 2266–2275. doi:10.1039/c4lc00436a
  • Martin, C., Dejardin, T., Hart, A., Riehle, M. O., & Cumming, D. R. S. (2013). Directed Nerve Regeneration Enabled by Wirelessly Powered Electrodes Printed on a Biodegradable Polymer. Advanced Healthcare Materials, 1–6. doi:10.1002/adhm.201300481
  • Nikukar, H., Reid, S., Tsimbouri, P. M., Riehle, M. O., Curtis, A. S. G., & Dalby, M. J. (2013). Osteogenesis of mesenchymal stem cells by nanoscale mechanotransduction. ACS Nano, 7(3), 2758–67. doi:10.1021/nn400202j




Molecular mechanics of clustering and gating in plant ion channels

Outline & aim

The organisation of ion channels in eukaryotic membranes is intimately connected with their activity, but the mechanics of the connections are, in general, poorly understood. Both in animals and plant, many ion channels assemble in discrete clusters that localise within the surface of the cell membrane. The clustering of the GORK channel — responsible for potassium efflux for stomatal regulation in the model plant Arabidopsis — is intimately connected with its gating by extracellular K+. Recent work from this laboratory yielded new insights into the processes linking K+ binding within the GORK channel pore to clustering of the channel proteins.

This project will explore the physical structure of GORK that determines its self-interaction as a function of the K+ concentration with the aim of understanding its integration with the well-known mechanics of channel gating.


The student will gain expertise in molecular biological methods, and a deep grounding in the concepts of membrane transport, cell biology and physiology. Skills training will include in-depth engagement in molecular biology, protein biochemistry and molecular genetic/protein design, single-cell imaging and fluorescence microscopy, and single-cell recording techniques of electrophysiology using heterologous expression in mammalian cell systems and in plants.


  • Lefoulon, et al. (2014) Plant Physiol 166, 950-75
  • Eisenach, et al. (2012) Plant J 69, 241-51
  • Dreyer & Blatt (2009) Trends Plant Sci 14, 383-90




Photoregulation of plant hormone trafficking and signalling

Outline & aim

The phytohormone auxin (indole acetic acid) is instrumental for directing and shaping plant growth and form. Understanding how this chemical growth regulator controls plant development will have important implications for manipulating plant growth for agronomic gain. Auxin trafficking is profoundly influenced by many abiotic factors, including light. For instance, phototropin receptor kinases (phot1 and phot2) function to redirect auxin fluxes that are required to reorientate plant growth toward or away from light. The phot1-interacting protein Non-Phototropic Hypocotyl 3 (NPH3) is essential for establishing these light-driven auxin movements. However, the mode of action of NPH3 and how it functions to regulate transporter activity remains poorly understood.

This project aims to spatially dissect the site(s) of NPH3 action and how it impacts the subcellular trafficking and function of known auxin transporter proteins implicated in phototropism. Work is also focussed on characterising a newly identified NPH3 protein (NPH3-like, NPH3L) that interacts directly with phot1. Functional characterisation of NPH3, NPH3L and its homologues will provide new insights into the photoregulation of auxin trafficking and signalling associated with phototropism and other phototropin-mediated responses.


This proposal is focused on characterising the molecular processes that integrate light and phytohormone signalling, two important agronomic processes associated with manipulating plant growth and optimising photosynthetic efficiency. Both these research areas fall squarely within the strategic priorities of Food Security, Living with Environmental Change and Crop Science. The project will provide excellent training in a range of techniques associated with molecular biology, cell biology, genetics and biochemistry. Training will also be given in key skills including teaching, project-management and science communication. Additionally, the student will have the opportunity to attend and present their research at the international photobiology meetings e.g. Gordon Research Conference in Photosensory Receptors and Signal Transduction, Galveston, Texas in 2016 (which I will chair).


  • CHRISTIE, J.M. (2007) Phototropin blue-light receptors. Annu. Rev. Plant Biol. 58, 21-45.
  • Sullivan, S., Thomson, C.E., Kaiserli, E. and Christie J.M. (2009) Interaction specificity of Arabidopsis 14-3-3 proteins and phototropin receptor kinases. FEBS Lett. 583, 2187-2193.
  • Christie, J.M., Richter, G., Yang, H., Sullivan, S., Thomson, C.E., Lin, J., Tiapiwatanakun, B., Ennis, M. Kaiserli, E., Lee, O.R., Adamec, J., Peer, W.A. and Murphy, A.S. (2011) Phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism. PLoS Biol., 9(6): e1001076.
  • CHRISTIE, J.M. and MURPHY, A.S. (2013) Shoot phototropism in higher plants: New light through old concepts. Am. J. Bot. 100, 35-46.




Regulation of plant nuclear architecture by light

Outline & aim

Light is essential for plant growth, development and photoprotection. One of the primary sites where light regulates major cellular processes is the nucleus. We are interested in elucidating how light stimulates the accumulation of photoreceptors and signalling components in nuclear micro-domains to regulate gene expression, chromatin remodelling and DNA damage repair. The student will investigate how nuclear compartmentalisation correlates with changes in the expression of growth promoting genes in response to light.


A series of approaches will be used depending on the interests and background of the applicant: Gene expression analysis (qRT-PCR, ChIP), molecular cloning, protein interactions studies (Y2H, co-immunoprecipitation), protein characterisation (heterologous expression and purification), cell biology (confocal microscopy), plant genetics and plant physiology.




The Centre for the Cellular Microenvironment at Glasgow is a new entity (2018) arising from the merger of the Centre for Cell Engineering (CCE) and the Microenvironments for Medicine (MiMe).

Our goal is to apply the knowledge gained from our research to address key issues affecting (stem) cell biology. Our research is centred on exploring how cells respond to their environment by changes in behaviour, differentiation, metabolism and various aspects of development. 

The Centre for the Cellular Microenvironment at Glasgow adopts an interdisciplinary approach across the School of Molecular Biosciences in the College of Medical, Veterinary & Life Sciences and the Bioengineering Group in the School of Engineering, which is part of the College of Science & Engineering. Cell-environment interactions, cell signalling, stem cell biology, cell, and protein structure and function at interfaces, bioengineering of gene regulation by microenvironments, nanoparticle technologies, synthetic biology to guide cell adhesion, cell sorting and translational approaches to take finding to clinical application.

Research topics are allied to ongoing research within the Centre for the Cellular Microenvironment. Some projects are related to basic science and other projects are more focused on translational aspects of our research, but all projects integrate with our existing research themes. A variety of multidisciplinary research approaches are applied within these research programmes, including biomedical engineering, protein engineering, biochemistry, molecular biology, biophysics, polyomics (genomics, transcriptomics, proteomics, metabolomics), biomaterials, bioinformatics and synthetic biology, as well as cellular imaging of biological functions.

Specific areas of interest include:

  • bioengineering the microenvironment
  • engineering approaches to control gene expression
  • bio-engineered interfaces
  • biomaterials, scaffolds and 3D printing
  • protein structure and function
  • protein engineering and application
  • cell sorting and characterisation
  • stem cell maintenance and differentiation
  • nanoparticles for theranostics

Specific areas of application are:

  • bone repair
  • nerve repair
  • sourcing of rare cells
  • blood Brain Barrier
  • mesenchymal stem cell niche
  • haematopoietic stem cell niche

See Glasgow Biomaterials Seminar for an idea about recent and current projects.

Our PhD programme provides excellent training in cutting edge technologies that will be applicable to career prospects in both academia and industry. Many of our graduates become postdoctoral research associates (Canada, USA, Europe and UK) while others go on to take up positions within industry either locally (e.g. Collagen Solutions, BioGelX) or overseas (e.g. Medtronic). We have strong national and international connections with many academic and industrial collaborators. Funds are available through the College of Medical, Veterinary & Life Sciences or the College of Science & Engineering (depending on primary alignment) to allow visits to international laboratories, or industry where part of your project can be carried out. This provides an excellent opportunity for networking and increasing your scientific knowledge and skill set.

Study options


  • Duration: 3/4 years full-time; 5 years part-time

Individual research projects are tailored around the expertise of principal investigators.

Integrated PhD programmes (5 years)

Our Integrated PhD allows you to combine masters level teaching with your chosen research direction in a 1+3+1 format. 

International students with MSc and PhD scholarships/funding do not have to apply for 2 visas or exit and re-enter the country between programmes. International and UK/EU students may apply.

Year 1

Taught masters level modules are taken alongside students on our masters programmes. Our research-led teaching supports you to fine tune your research ideas and discuss these with potential PhD supervisors. You will gain a valuable introduction to academic topics, research methods, laboratory skills and the critical evaluation of research data. Your grades must meet our requirements in order to gain entry on to a PhD research programme. If not, you will receive the masters degree only.

Years 2, 3 and 4

PhD programme with research/lab work, completing an examinable piece of independent research in year 4.

Year 5

Thesis write up.

MSc (Research)

  • Duration: 1 year full-time; 2 years part-time

Entry requirements

A 2.1 Honours degree or equivalent.

English language requirements

For applicants whose first language is not English, the University sets a minimum English Language proficiency level.

International English Language Testing System (IELTS) Academic module (not General Training)

  • 6.5 with no subtests under 6.0
  • Tests must have been taken within 2 years 5 months of start date. Applicants must meet the overall and subtest requirements using a single test.

Common equivalent English language qualifications accepted for entry to this programme:

TOEFL (ibt, my best or athome)

  • 79; with Reading 13; Listening 12; Speaking 18;Writing 21
  • Tests must have been taken within 2 years 5 months of start date. Applicants must meet the overall and subtest requirements , this includes TOEFL mybest.

Pearsons PTE Academic

  • 59 with minimum 59 in all subtests
  • Tests must have been taken within 2 years 5 months of start date. Applicants must meet the overall and subtest requirements using a single test.

Cambridge Proficiency in English (CPE) and Cambridge Advanced English (CAE)

  • 176 overall, no subtest less than 169
  • Tests must have been taken within 2 years 5 months of start date. Applicants must meet the overall and subtest requirements using a single test.

Oxford English Test

  • Oxford ELLT 7
  • R&L: OIDI level no less than 6 with Reading: 21-24 Listening: 15-17
  • W&S: OIDI level no less than 6

Trinity College Tests

Integrated Skills in English II & III & IV: ISEII Distinction with Distinction in all sub-tests.

University of Glasgow Pre-sessional courses

Tests are accepted for 2 years following date of successful completion.

Alternatives to English Language qualification

  • Degree from majority-English speaking country (as defined by the UKVI including Canada if taught in English)
    • students must have studied for a minimum of 2 years at Undergraduate level, or 9 months at Master's level, and must have complete their degree in that majority-English speaking country and within the last 6 years
  • Undergraduate 2+2 degree from majority-English speaking country (as defined by the UKVI including Canada if taught in English)
    • students must have completed their final two years study in that majority-English speaking country and within the last 6 years

For international students, the Home Office has confirmed that the University can choose to use these tests to make its own assessment of English language ability for visa applications to degree level programmes. The University is also able to accept UKVI approved Secure English Language Tests (SELT) but we do not require a specific UKVI SELT for degree level programmes. We therefore still accept any of the English tests listed for admission to this programme.

Pre-sessional courses

The University of Glasgow accepts evidence of the required language level from the English for Academic Study Unit Pre-sessional courses. We also consider other BALEAP accredited pre-sessional courses:

Fees and funding



  • UK: To be confirmed by UKRI [23/24 fee was £4,712]
  • International & EU: £30,240

Prices are based on the annual fee for full-time study. Fees for part-time study are half the full-time fee.

Irish nationals who are living in the Common Travel Area of the UK, EU nationals with settled or pre-settled status, and Internationals with Indefinite Leave to remain status can also qualify for home fee status.

Alumni discount

We offer a 20% discount to our alumni on all Postgraduate Research and full Postgraduate Taught Masters programmes. This includes University of Glasgow graduates and those who have completed Junior Year Abroad, Exchange programme or International Summer School with us. The discount is applied at registration for students who are not in receipt of another discount or scholarship funded by the University. No additional application is required.

Possible additional fees

  • Re-submission by a research student £540
  • Submission for a higher degree by published work £1,355
  • Submission of thesis after deadline lapsed £350
  • Submission by staff in receipt of staff scholarship £790

Depending on the nature of the research project, some students will be expected to pay a bench fee (also known as research support costs) to cover additional costs. The exact amount will be provided in the offer letter.


The iPhD  is not supported by University of Glasgow Scholarship/Funding



We offer a wide range of cutting-edge research facilities, including core facilities in:

  • fluorescence activated cell sorting analysis
  • cell imaging and biophysical techniques, including NMR
  • protein characterization that consists of state of the art machinery for analysing protein structure and interactions
  • mass spectrometry
  • next generation sequencing

Our research spaces are state-of-the-art and span three buildings. Notably, The Centre for Cell Engineering is a collaboration between biologists, physical scientists, engineers and clinicians aiming to understand the cell / material interface and the micro / nano scale. In addition to increasing understanding of fundamental cell biology to new nano and micro material, the Centre aims to translate cutting-edge science to clinic. 

Through their research interests in drug development, biotechnology and clinical applications, many of our project supervisors have strong links with industry. We also have strong academic conections with many international collaborators in universities and research institutes. Funds are available through the collage of MVLS to allow visits to international laboratories where part of your project can be carried out. This provides an excellent opportunity for networking and increasing your scientific knowledge and skill set.

Graduate School

The College of Medical, Veterinary & Life Sciences Graduate School provides a vibrant, supportive and stimulating environment for all our postgraduate students. We aim to provide excellent support for our postgraduates through dedicated postgraduate convenors, highly trained supervisors and pastoral support for each student.
Our overarching aim is to provide a research training environment that includes:

  • provision of excellent facilities and cutting edge techniques
  • training in essential research and generic skills
  • excellence in supervision and mentoring
  • interactive discussion groups and seminars
  • an atmosphere that fosters critical cultural policy and research analysis
  • synergy between research groups and areas
  • extensive multidisciplinary and collaborative research
  • extensive external collaborations both within and beyond the UK 
  • a robust generic skills programme including opportunities in social and commercial training

How to apply

Identify potential supervisors

All Postgraduate Research Students are allocated a supervisor* who will act as the main source of academic support and research mentoring. You may want to identify a potential supervisor and contact them to discuss your research proposal before you apply. Please note, even if you have spoken to an academic staff member about your proposal you still need to submit an online application form.

You can find relevant academic staff members with our staff research interests search.

*iPhD applicants do not need to contact a supervisor, as you will start your programme by choosing a masters from our Taught degree programmes A-Z [do not apply directly to a masters].

Gather your documents

Before applying please make sure you gather the following supporting documentation:

  1. Final or current degree transcripts including grades (and an official translation, if needed) – scanned copy in colour of the original document.
  2. Degree certificates (and an official translation, if needed): scanned copy in colour of the original document
  3. Two references on headed paper and signed by the referee. One must be academic, the other can be academic or professional [except iPhD applicants, where only one academic or professional reference is required]. References may be uploaded as part of the application form or you may enter your referees contact details on the application form. We will then email your referee and notify you when we receive the reference.  We can also accept confidential references direct to, from the referee’s university or business email account.
  4. Research proposal, CV, samples of written work as per requirements for each subject area. iPhD applicants do not need to submit any of these as you will start your programme by choosing a masters.
  5. Completed the College of MVLS Postgraduate Research Cover Letter

Notes for iPhD applicants

  • add 'I wish to study the MSc in (chosen subject) as the masters taught component of the iPhD' in the research proposal box
  • write 'n/a' for the supervisor name
Apply now

Contact us

Before you apply

PhD/MSc/MD: email

iPhD: email

After you have submitted your application

PhD/MSc/MD/iPhD: contact our Admissions team

Any references may be submitted by email to: