Professor Tara Brendle

  • Professor of Mathematics (Mathematics)
  • Elected Academic Staff members on Court (Academic Services)

telephone: 01413306361
email: Tara.Brendle@glasgow.ac.uk

Room 429, Mathematics, Mathematics and Statistics Building, Glasgow G12 8SU

Import to contacts

ORCID iDhttps://orcid.org/0000-0002-9594-8229

Research interests

My main research interests involve the interplay between algebra and topology. The automorphism group of a surface is a fundamental object in geometric and combinatorial group theory, low-dimensional topology, and algebraic geometry, for example. My research focuses on how these mapping class groups of surfaces are related to other important classes of groups such as braid groups and Coxeter groups, arithmetic groups, and automorphism groups of free groups, as well as the role played by these groups in determining the structure of 3- and 4-manifolds via constructions such as Heegaard splittings and Lefschetz fibrations.

Research groups

Publications

List by: Type | Date

Jump to: 2023 | 2019 | 2018 | 2017 | 2015 | 2013 | 2008 | 2007 | 2005 | 2004 | 2001
Number of items: 19.

2023

Brendle, Tara ORCID logoORCID: https://orcid.org/0000-0002-9594-8229, Broaddus, Nathan and Putman, Andrew (2023) The high-dimensional cohomology of the moduli space of curves with level structures II: punctures and boundary. Israel Journal of Mathematics, (doi: 10.1007/s11856-023-2566-9) (Early Online Publication)

Brendle, Tara ORCID logoORCID: https://orcid.org/0000-0002-9594-8229, Broaddus, Nathan and Putman, Andrew (2023) The mapping class group of connect sums of S2 x S1. Transactions of the American Mathematical Society, 376(4), pp. 2557-2572. (doi: 10.1090/tran/8758)

2019

Brendle, Tara E. ORCID logoORCID: https://orcid.org/0000-0002-9594-8229 and Margalit, Dan (2019) Normal subgroups of mapping class groups and the metaconjecture of Ivanov. Journal of the American Mathematical Society, 32, pp. 1009-1070. (doi: 10.1090/jams/927)

2018

Brendle, Tara ORCID logoORCID: https://orcid.org/0000-0002-9594-8229 and Margalit, Dan (2018) Erratum to: Commensurations of the Johnson kernel. Geometry and Topology, (doi: 10.2140/gt.2004.8.1361)

Brendle, Tara E. ORCID logoORCID: https://orcid.org/0000-0002-9594-8229 and Margalit, Dan (2018) The level four braid group. Journal für die Reine und Angewandte Mathematik (Crelles Journal), 735, pp. 249-264. (doi: 10.1515/crelle-2015-0032)

2017

Brendle, Tara ORCID logoORCID: https://orcid.org/0000-0002-9594-8229, Childers, Leah and Margalit, Dan (2017) Mapping class groups. In: Clay, Matt and Margalit, Dan (eds.) Office Hours With a Geometric Group Theorist. Princeton University Press, pp. 362-387. ISBN 9780691158662

2015

Brendle, Tara E. ORCID logoORCID: https://orcid.org/0000-0002-9594-8229 and Margalit, Dan (2015) Factoring in the hyperelliptic Torelli group. Mathematical Proceedings of the Cambridge Philosophical Society, 159(2), pp. 207-217. (doi: 10.1017/S0305004115000286)

Strachan, Ian ORCID logoORCID: https://orcid.org/0000-0001-6265-5043, Brendle, Tara ORCID logoORCID: https://orcid.org/0000-0002-9594-8229 and Wilson, Andrew ORCID logoORCID: https://orcid.org/0000-0001-7770-0134 (2015) Online assessment and feedback: how to square the circle. 8th Annual University of Glasgow Learning and Teaching Conference, Glasgow, UK, 14 Apr 2015.

Brendle, Tara ORCID logoORCID: https://orcid.org/0000-0002-9594-8229, Margalit, Dan and Putman, Andrew (2015) Generators for the hyperelliptic Torelli group and the kernel of the Burau representation at t = -1. Inventiones Mathematicae, 200(1), pp. 263-310. (doi: 10.1007/s00222-014-0537-9)

2013

Brendle, T.E. ORCID logoORCID: https://orcid.org/0000-0002-9594-8229 and Margalit, D. (2013) Point pushing, homology, and the hyperelliptic involution. Michigan Mathematical Journal, 62(3), pp. 451-473. (doi: 10.1307/mmj/1378757883)

Brendle, T. ORCID logoORCID: https://orcid.org/0000-0002-9594-8229, Childers, L. and Margalit, D. (2013) Cohomology of the hyperelliptic Torelli group. Israel Journal of Mathematics, 195(2), pp. 613-630. (doi: 10.1007/s11856-012-0075-3)

Brendle, T.E. ORCID logoORCID: https://orcid.org/0000-0002-9594-8229 and Hatcher, A. (2013) Configuration spaces of rings and wickets. Commentarii Mathematici Helvetici, 88(1), pp. 131-162. (doi: 10.4171/CMH/280)

2008

Birman, J., Brendle, T. ORCID logoORCID: https://orcid.org/0000-0002-9594-8229 and Broaddus, N. (2008) Calculating the image of the second Johnson–Morita representation. In: Groups of Diffeomorphisms (Birthday Conference in Honor of Professor Shigeyuki Morita), University of Tokyo, 2006,

Brendle, T. and Margalit, D. (2008) Addendum to: commensurations of the Johnson kernel. Geometry and Topology, 12, pp. 97-101. (doi: 10.2140/gt.2008.12.97)

2007

Brendle, T.E. ORCID logoORCID: https://orcid.org/0000-0002-9594-8229 and Farb, B. (2007) The Birman–Craggs–Johnson homomorphism and abelian cycles in the Torelli group. Mathematische Annalen, 338(1), pp. 33-53. (doi: 10.1007/s00208-006-0066-y)

2005

Birman, J. and Brendle, T. ORCID logoORCID: https://orcid.org/0000-0002-9594-8229 (2005) Braids: a survey. In: Menasco, W. and Thistlethwaite, M. (eds.) Handbook of Knot Theory. Elsevier, pp. 19-103. ISBN 9780444514523

2004

Brendle, T.E. ORCID logoORCID: https://orcid.org/0000-0002-9594-8229 and Farb, B. (2004) Every mapping class group is generated by 6 involutions. Journal of Algebra, 278(1), pp. 187-198. (doi: 10.1016/j.jalgebra.2004.02.019)

Brendle, T.E. ORCID logoORCID: https://orcid.org/0000-0002-9594-8229 and Margalit, D. (2004) Commensurations of the Johnson kernel. Geometry and Topology, 8, pp. 1361-1384. (doi: 10.2140/gt.2004.8.1361)

2001

Brendle, T.E. ORCID logoORCID: https://orcid.org/0000-0002-9594-8229 and Hamidi-Tehrani, H. (2001) On the linearity problem for mapping class groups. Algebraic and Geometric Topology, 1, pp. 445-468.

This list was generated on Sun Jun 15 05:47:13 2025 BST.
Number of items: 19.

Articles

Brendle, Tara ORCID logoORCID: https://orcid.org/0000-0002-9594-8229, Broaddus, Nathan and Putman, Andrew (2023) The high-dimensional cohomology of the moduli space of curves with level structures II: punctures and boundary. Israel Journal of Mathematics, (doi: 10.1007/s11856-023-2566-9) (Early Online Publication)

Brendle, Tara ORCID logoORCID: https://orcid.org/0000-0002-9594-8229, Broaddus, Nathan and Putman, Andrew (2023) The mapping class group of connect sums of S2 x S1. Transactions of the American Mathematical Society, 376(4), pp. 2557-2572. (doi: 10.1090/tran/8758)

Brendle, Tara E. ORCID logoORCID: https://orcid.org/0000-0002-9594-8229 and Margalit, Dan (2019) Normal subgroups of mapping class groups and the metaconjecture of Ivanov. Journal of the American Mathematical Society, 32, pp. 1009-1070. (doi: 10.1090/jams/927)

Brendle, Tara ORCID logoORCID: https://orcid.org/0000-0002-9594-8229 and Margalit, Dan (2018) Erratum to: Commensurations of the Johnson kernel. Geometry and Topology, (doi: 10.2140/gt.2004.8.1361)

Brendle, Tara E. ORCID logoORCID: https://orcid.org/0000-0002-9594-8229 and Margalit, Dan (2018) The level four braid group. Journal für die Reine und Angewandte Mathematik (Crelles Journal), 735, pp. 249-264. (doi: 10.1515/crelle-2015-0032)

Brendle, Tara E. ORCID logoORCID: https://orcid.org/0000-0002-9594-8229 and Margalit, Dan (2015) Factoring in the hyperelliptic Torelli group. Mathematical Proceedings of the Cambridge Philosophical Society, 159(2), pp. 207-217. (doi: 10.1017/S0305004115000286)

Brendle, Tara ORCID logoORCID: https://orcid.org/0000-0002-9594-8229, Margalit, Dan and Putman, Andrew (2015) Generators for the hyperelliptic Torelli group and the kernel of the Burau representation at t = -1. Inventiones Mathematicae, 200(1), pp. 263-310. (doi: 10.1007/s00222-014-0537-9)

Brendle, T.E. ORCID logoORCID: https://orcid.org/0000-0002-9594-8229 and Margalit, D. (2013) Point pushing, homology, and the hyperelliptic involution. Michigan Mathematical Journal, 62(3), pp. 451-473. (doi: 10.1307/mmj/1378757883)

Brendle, T. ORCID logoORCID: https://orcid.org/0000-0002-9594-8229, Childers, L. and Margalit, D. (2013) Cohomology of the hyperelliptic Torelli group. Israel Journal of Mathematics, 195(2), pp. 613-630. (doi: 10.1007/s11856-012-0075-3)

Brendle, T.E. ORCID logoORCID: https://orcid.org/0000-0002-9594-8229 and Hatcher, A. (2013) Configuration spaces of rings and wickets. Commentarii Mathematici Helvetici, 88(1), pp. 131-162. (doi: 10.4171/CMH/280)

Brendle, T. and Margalit, D. (2008) Addendum to: commensurations of the Johnson kernel. Geometry and Topology, 12, pp. 97-101. (doi: 10.2140/gt.2008.12.97)

Brendle, T.E. ORCID logoORCID: https://orcid.org/0000-0002-9594-8229 and Farb, B. (2007) The Birman–Craggs–Johnson homomorphism and abelian cycles in the Torelli group. Mathematische Annalen, 338(1), pp. 33-53. (doi: 10.1007/s00208-006-0066-y)

Brendle, T.E. ORCID logoORCID: https://orcid.org/0000-0002-9594-8229 and Farb, B. (2004) Every mapping class group is generated by 6 involutions. Journal of Algebra, 278(1), pp. 187-198. (doi: 10.1016/j.jalgebra.2004.02.019)

Brendle, T.E. ORCID logoORCID: https://orcid.org/0000-0002-9594-8229 and Margalit, D. (2004) Commensurations of the Johnson kernel. Geometry and Topology, 8, pp. 1361-1384. (doi: 10.2140/gt.2004.8.1361)

Brendle, T.E. ORCID logoORCID: https://orcid.org/0000-0002-9594-8229 and Hamidi-Tehrani, H. (2001) On the linearity problem for mapping class groups. Algebraic and Geometric Topology, 1, pp. 445-468.

Book Sections

Brendle, Tara ORCID logoORCID: https://orcid.org/0000-0002-9594-8229, Childers, Leah and Margalit, Dan (2017) Mapping class groups. In: Clay, Matt and Margalit, Dan (eds.) Office Hours With a Geometric Group Theorist. Princeton University Press, pp. 362-387. ISBN 9780691158662

Birman, J. and Brendle, T. ORCID logoORCID: https://orcid.org/0000-0002-9594-8229 (2005) Braids: a survey. In: Menasco, W. and Thistlethwaite, M. (eds.) Handbook of Knot Theory. Elsevier, pp. 19-103. ISBN 9780444514523

Conference or Workshop Item

Strachan, Ian ORCID logoORCID: https://orcid.org/0000-0001-6265-5043, Brendle, Tara ORCID logoORCID: https://orcid.org/0000-0002-9594-8229 and Wilson, Andrew ORCID logoORCID: https://orcid.org/0000-0001-7770-0134 (2015) Online assessment and feedback: how to square the circle. 8th Annual University of Glasgow Learning and Teaching Conference, Glasgow, UK, 14 Apr 2015.

Conference Proceedings

Birman, J., Brendle, T. ORCID logoORCID: https://orcid.org/0000-0002-9594-8229 and Broaddus, N. (2008) Calculating the image of the second Johnson–Morita representation. In: Groups of Diffeomorphisms (Birthday Conference in Honor of Professor Shigeyuki Morita), University of Tokyo, 2006,

This list was generated on Sun Jun 15 05:47:13 2025 BST.

Supervision