## Algebra

The traditional objects of study in algebra are algebraic structures such as groups, rings, and modules. However, the developments of the last decades have increasingly emphasised the subject's connections with other areas of mathematics and science, such as geometry, topology, classical and quantum field theory, integrable systems, and theoretical computing science.

Here in Glasgow, we study both classical and modern problems and questions in algebra. The research interests of our staff members include geometric group theory, both commutative and noncommutative ring theory, as well as topics in representation theory and homological algebra. All information about our group, our members, our activities, and a full list of our expertise, can be found at our Core Structures webpage.

Our group has an active PhD student community, and every year we admit new PhD students. We welcome applications from across the world, and we encourage you to browse our available supervisors, and also to consult our general advice on how to navigate the application process.

The non-exhaustive list under Postgraduate Opportunities contains a sample of the types of PhD projects that our group offers.

## Staff

#### Dr Spiros Adams-Florou : Lecturer

Algebraic K-theory, L-Theory

**Member of other research groups:** Geometry and Topology

#### Prof Alex Bartel : Senior lecturer

**Algebraic number theory:**- Galois module structures, e.g. the structure of the ring of integers of a number field as a Galois module, or of its unit group, or of the Mordell-Weil group of an abelian variety over a number field;
- Arithmetic statistics, especially the Cohenâ€•Lenstra heuristics on class groups of number fields and their generalisations;
- Arithmetic of elliptic curves over number fields.

**Representation theory of finite groups:**- Integral representations of finite groups;
- Connections between the Burnside ring and the representation ring of a finite group;
- Applications of the above to number theory and geometry.

**Geometry and topology:**- Actions of finite groups of low-dimensional manifolds.

**Member of other research groups:** Geometry and Topology

**Research student:** Ross Paterson

#### Prof Gwyn Bellamy : Professor of Mathematics

My research interests are in geometric representation theory and its connections to algebraic geometry and algebraic combinatorics. In particular, I am interested in all aspects of symplectic representations, including symplectic reflection algebras, resolutions of symplectic singularties, D-modules and deformation-quantization algebras.

**Member of other research groups:** Geometry and Topology

**Research students:** Niall Hird, Tomasz Przezdziecki, Kellan Steele, Ross Paterson

#### Dr Tara Brendle : Professor of Mathematics

Geometric group theory; mapping class groups of surface

**Member of other research groups:** Geometry and Topology

**Research student:** Luke Jeffreys

#### Dr Kenneth A Brown : Professor of Mathematics

Noncommutative algebra; Hopf algebras; homological algebra

**Member of other research groups:** Geometry and Topology

**Research student:** Miguel Couto

#### Dr Sam Dean : Lecturer

#### Dr Florian Eisele : Lecturer

Representation theory of algebras and orders; modular representation theory; orders over discrete valuation rings

#### Dr Mikhail Feigin : Senior lecturer

Representations of Cherednik algebras; rings of quasi-invariants

**Member of other research groups:** Integrable Systems and Mathematical Physics, Geometry and Topology

**Research students:** Maali Alkadhem, Georgios Antoniou

#### Dr Jamie Gabe : Honorary Research Fellow/RA

**Member of other research groups:** Mathematical Biology, Geometry and Topology

#### Dr Vaibhav Gadre : Lecturer

Teichmuller Dynamics, Mapping Class Groups.

**Member of other research groups:** Geometry and Topology

**Research student:** Luke Jeffreys

#### Dr Sira Gratz : Lecturer

representation theory of algebras, cluster algebras and cluster categories, triangulated categories

**Research students:** James Rowe, Damian Wierzbicki

#### Dr Dimitra Kosta : LKAS Fellowship

Markov bases of toric ideals; graphs; matroids; factoriality of threefolds.

**Member of other research groups:** Statistical Methodology, Environmental Statistics, Biostatistics and Statistical Genetics, Geometry and Topology

#### Dr Alan Logan : Jack Fellowship

Geometric and combinatorial group theory

#### Dr Ciaran Meachan : Lecturer

**Member of other research groups:** Geometry and Topology

#### Dr Theo Raedschelders : Research Assistant

**Member of other research groups:** Geometry and Topology

**Supervisor:** Michael Wemyss

#### Dr Greg Stevenson : Lecturer

**Member of other research groups:** Geometry and Topology

**Research student:** James Rowe

#### Dr Christian Voigt : Senior lecturer

Noncommutative geometry; K-theory; Quantum groups

**Member of other research groups:** Geometry and Topology, Analysis

**Research students:** Jamie Antoun, Sergio Giron Pacheco

#### Prof Michael Wemyss : Professor of Mathematics

Algebraic geometry and its interactions, principally between noncommutative and homological algebra, resolutions of singularities, and the minimal model program. All related structures, including: deformation theory, derived categories, stability conditions, associated commutative and homological structures and their representation theory, curve invariants, McKay correspondence, Cohen--Macaulay modules, finite dimensional algebras and cluster-tilting theory.

**Member of other research groups:** Geometry and Topology

**Research staff:** Theo Raedschelders

**Research students:** Sarah Kelleher (Mackie), Ogier Van Garderen

#### Dr Stuart White : Professor of Mathematics

Rigidity properties for groups; noncommutative geometry

**Member of other research groups:** Geometry and Topology, Analysis

**Research student:** Sergio Giron Pacheco

#### Dr Mike Whittaker : Lecturer

Operator algebras, self-similar groups, and Zappa-Szep products.

**Member of other research groups:** Geometry and Topology, Analysis

**Research students:** Dimitrios Gerontogiannis , Mustafa Ozkaraca, Jamie Antoun

#### Dr William Woods : Lecturer

#### Dr Joachim Zacharias : Reader

C*-algebras, their classification and amenability properties; special examples of C*-algebras; K-theory and non commutative topology, noncommutative dynamical systems, geometric group theory with applications to C*-algebras.

**Member of other research groups:** Integrable Systems and Mathematical Physics, Geometry and Topology, Analysis

**Research students:** Luke Ito, Dimitrios Gerontogiannis

## Postgraduates

#### Miguel Couto : PhD Student

**Supervisor:** Kenneth A Brown

#### Niall Hird : PhD Student

**Supervisor:** Gwyn Bellamy

#### Luke Jeffreys : PhD Student

**Research Topic:** Teichmüller dynamics

**Member of other research groups:** Geometry and Topology

**Supervisors:** Vaibhav Gadre, Tara Brendle

#### Sarah Kelleher (Mackie) : PhD Student

**Supervisor:** Michael Wemyss

#### Ross Paterson : PhD Student

**Supervisors:** Alex Bartel, Gwyn Bellamy

#### Tomasz Przezdziecki : PhD Student

**Supervisor:** Gwyn Bellamy

#### James Rowe : PhD Student

**Supervisors:** Sira Gratz, Greg Stevenson

#### Kellan Steele : PhD Student

**Member of other research groups:** Geometry and Topology

**Supervisor:** Gwyn Bellamy

#### Ogier Van Garderen : PhD Student

**Member of other research groups:** Geometry and Topology

**Supervisor:** Michael Wemyss

#### Damian Wierzbicki : PhD Student

**Research Topic:** cluster algebras

**Supervisors:** Christian Korff, Sira Gratz

## Postgraduate opportunities

### Quantum spin-chains and exactly solvable lattice models (PhD)

**Supervisors:** Christian Korff

**Relevant research groups:** Algebra, Integrable Systems and Mathematical Physics

Quantum spin-chains and 2-dimensional statistical lattice models, such as the Heisenberg spin-chain and the six and eight-vertex models remain an active area of research with many surprising connections to other areas of mathematics.

Some of the algebra underlying these models deals with quantum and Hecke algebras, the Temperley-Lieb algebra, the Virasoro algebra and Kac-Moody algebras. There are many unanswered questions ranging from very applied to more pure topics in representation theory and algebraic combinatorics. For example, recently these models have been applied in combinatorial representation theory to compute Gromov-Witten invariants (enumerative geometry) and fusion coefficients in conformal field theory (mathematical physics).

### Integrable quantum field theory and Y-systems (PhD)

**Supervisors:** Christian Korff

**Relevant research groups:** Integrable Systems and Mathematical Physics, Algebra

The mathematically rigorous and exact construction of a quantum field theory remains a tantalising challenge. In 1+1 dimensions exact results can be found by computing the scattering matrices of such theories using a set of functional relations. These theories exhibit beautiful mathematical structures related to Weyl groups and Coxeter geometry.

In the thermodynamic limit (volume and particle number tend to infinity while the density is kept fixed) the set of functional relations satisfied by the scattering matrices leads to so-called Y-systems which appear in cluster algebras introduced by Fomin and Zelevinsky and the proof of dilogarithm identities in number theory.

### Algebraic Combinatorics and Symbolic Computation (PhD)

**Supervisors:** Christian Korff

**Relevant research groups:** Algebra, Integrable Systems and Mathematical Physics

This project will look at topics in algebraic combinatorics, for example the ring of symmetric functions, the Robinson-Schensted-Knuth correspondence, crystal graphs, and their implementation in symbolic computational software. An example can be found here:

http://demonstrations.wolfram.com/KirillovReshetikhinCrystals/

Emphasis of the project will be on the efficient design and writing of algorithms with the aim to provide data for open research problems in algebraic combinatorics.

The ideal candidate should have a dual interest in mathematics and computer science and, in particular, already possess some programming experience. As part of the project it is envisaged to spend some time with a private software company to explore a possible commercialisation of the resulting computer packages.