# Algebra

# Algebra

The traditional objects of study in algebra are algebraic structures such as groups, rings, and modules. However, the developments of the last decades have increasingly emphasised the subject's connections with other areas of mathematics and science, such as geometry, topology, classical and quantum field theory, integrable systems, and theoretical computing science.

Here in Glasgow, we study both classical and modern problems and questions in algebra. The research interests of our staff members include geometric group theory, both commutative and noncommutative ring theory, as well as topics in representation theory and homological algebra. All information about our group, our members, our activities, and a full list of our expertise, can be found at our Core Structures webpage.

Our group has an active PhD student community, and every year we admit new PhD students. We welcome applications from across the world, and we encourage you to browse our available supervisors, and also to consult our general advice on how to navigate the application process.

The non-exhaustive list under Postgraduate Opportunities contains a sample of the types of PhD projects that our group offers.

## Staff

#### Dr Spiros Adams-Florou Lecturer

Algebraic K-theory, L-Theory

**Member of other research groups:** Geometry and Topology

#### Dr Alex Bartel Senior lecturer

**Algebraic number theory:**- Galois module structures, e.g. the structure of the ring of integers of a number field as a Galois module, or of its unit group, or of the Mordell-Weil group of an abelian variety over a number field;
- Arithmetic statistics, especially the Cohenâ€•Lenstra heuristics on class groups of number fields and their generalisations;
- Arithmetic of elliptic curves over number fields.

**Representation theory of finite groups:**- Integral representations of finite groups;
- Connections between the Burnside ring and the representation ring of a finite group;
- Applications of the above to number theory and geometry.

**Geometry and topology:**- Actions of finite groups of low-dimensional manifolds.

**Member of other research groups:** Geometry and Topology

#### Dr Gwyn Bellamy Senior lecturer

My research interests are in geometric representation theory and its connections to algebraic geometry and algebraic combinatorics. In particular, I am interested in all aspects of symplectic representations, including symplectic reflection algebras, resolutions of symplectic singularties, D-modules and deformation-quantization algebras.

**Member of other research groups:** Geometry and Topology

**Research students:** Niall Hird, Tomasz Przezdziecki, Kellan Steele

#### Dr Tara Brendle Professor of Mathematics

Geometric group theory; mapping class groups of surface

**Member of other research groups:** Geometry and Topology

**Research students:** Alan McLeay, Luke Jeffreys

#### Dr Kenneth A Brown Professor of Mathematics

Noncommutative algebra; Hopf algebras; homological algebra

**Member of other research groups:** Geometry and Topology

**Research student:** Miguel Couto

#### Dr Ben Davison Lecturer

Algebraic geometry, geometric representation theory, cluster algebras, Higgs bundles, Nakajima quiver varieties

**Member of other research groups:** Geometry and Topology

**Research student:** Ogier Van Garderen

#### Dr Sam Dean Lecturer

#### Dr Mikhail Feigin Senior lecturer

Representations of Cherednik algebras; rings of quasi-invariants

**Member of other research groups:** Integrable Systems and Mathematical Physics, Geometry and Topology

**Research students:** Maali Alkadhem, Georgios Antoniou

#### Dr Jamie Gabe Honorary Research Fellow

**Member of other research groups:** Mathematical Biology, Geometry and Topology

#### Dr Vaibhav Gadre Lecturer

Teichmuller Dynamics, Mapping Class Groups.

**Member of other research groups:** Geometry and Topology

**Research student:** Luke Jeffreys

#### Dr Sira Gratz Lecturer

representation theory of algebras, cluster algebras and cluster categories, triangulated categories

**Postgraduate opportunities:** Cluster Algebras and their implementation on the computer

#### Dr Dimitra Kosta LKAS Fellowship

Markov bases of toric ideals; graphs; matroids; factoriality of threefolds.

**Member of other research groups:** Statistical Methodology, Environmental Statistics, Biostatistics and Statistical Genetics, Geometry and Topology

#### Dr Alan Logan Jack Fellowship

Geometric and combinatorial group theory

#### Dr Ciaran Meachan Lecturer

**Member of other research groups:** Geometry and Topology

#### Dr Theo Raedschelders Research Assistant

**Member of other research groups:** Geometry and Topology

**Supervisor:** Michael Wemyss

#### Dr Greg Stevenson Lecturer

**Member of other research groups:** Geometry and Topology

#### Dr Christian Voigt Senior lecturer

Noncommutative geometry; K-theory; Quantum groups

**Member of other research groups:** Geometry and Topology, Analysis

**Research students:** Jamie Antoun, Andrew Monk, Samuel Evington

#### Prof Michael Wemyss Professor of Mathematics

Algebraic geometry and its interactions, principally between noncommutative and homological algebra, resolutions of singularities, and the minimal model program. All related structures, including: deformation theory, derived categories, stability conditions, associated commutative and homological structures and their representation theory, curve invariants, McKay correspondence, Cohen--Macaulay modules, finite dimensional algebras and cluster-tilting theory.

**Member of other research groups:** Geometry and Topology

**Research staff:** Theo Raedschelders

**Research students:** Sarah Kelleher (Mackie), Ogier Van Garderen

#### Dr Stuart White Professor of Mathematics

Rigidity properties for groups; noncommutative geometry

**Member of other research groups:** Geometry and Topology, Analysis

**Research student:** Samuel Evington

**Postgraduate opportunities:** Interactions between von Neumann and C*-algebras, Operator Algebras associated to groups

#### Dr Mike Whittaker Lecturer

Operator algebras, self-similar groups, and Zappa-Szep products.

**Member of other research groups:** Geometry and Topology, Analysis

**Research students:** Dimitrios Gerontogiannis , Mustafa Ozkaraca, Jamie Antoun

#### Dr Billy Woods Lecturer

#### Dr Joachim Zacharias Reader

C*-algebras, their classification and amenability properties; special examples of C*-algebras; K-theory and non commutative topology, noncommutative dynamical systems, geometric group theory with applications to C*-algebras.

**Member of other research groups:** Integrable Systems and Mathematical Physics, Geometry and Topology, Analysis

**Research students:** Luke Hamblin, Dimitrios Gerontogiannis

## Postgraduates

#### Miguel Couto PhD Student

**Supervisor:** Kenneth A Brown

#### Niall Hird PhD Student

**Supervisor:** Gwyn Bellamy

#### Luke Jeffreys PhD Student

**Supervisors:** Vaibhav Gadre, Tara Brendle

#### Sarah Kelleher (Mackie) PhD Student

**Supervisor:** Michael Wemyss

#### Alan McLeay PhD Student

**Research Topic:** Geometric group theory and mapping class groups of surfaces

**Member of other research groups:** Geometry and Topology

**Supervisor:** Tara Brendle

#### Tomasz Przezdziecki PhD Student

**Supervisor:** Gwyn Bellamy

#### Kellan Steele PhD Student

**Member of other research groups:** Geometry and Topology

**Supervisor:** Gwyn Bellamy

#### Angela Tabiri PhD Student

**Research Topic:** Quantum group actions on singular varieties

**Supervisor:** Ulrich Kraehmer

#### Ogier Van Garderen PhD Student

**Member of other research groups:** Geometry and Topology

**Supervisors:** Michael Wemyss, Ben Davison

## Postgraduate opportunities

### Operator Algebras associated to groups (PhD)

**Supervisors:** Stuart White

**Relevant research groups:** Algebra, Analysis

Operator algebras (both C*-algebras and von Neumann algebras) arise naturally from groups and provide a framework for the study of unitary representations. A driving question is how the structure of the operator algebra reflects that of the original group. This direction of research arguably dates back to the foundational papers of Murray and von Neumann and has repeatedly generated profound new insights over the years. Two possible avenues for PhD research are described below.

Rigidity asks to what extent the group is `remembered' by the operator algebra. There has been dramatic progress in recent years following the discovery of the first examples of von Neumann rigid groups by Ioana, Popa and Vaes in 2012. In the setting of C*-algebras, questions of rigidity are very tantalising; both in the setting of amenable groups, and also finding von Neumann rigid groups which are C*-simple.

A striking new connection to boundary actions developed by Kalentar and Kennedy provides a new framework to examine the situation when a reduced group C*-algebra is simple: in particular how much extra information does one gain from knowing that there is an underlying group? To what extent can one view these reduced group C*-algebras as mirroring behaviour of the associated von Neumann factor?

One particularly nice feature of working with operator algebras associated to groups is that there are concrete examples you can compute with in order to develop intutiution and understanding.

### Algebraic Combinatorics and Symbolic Computation (PhD)

**Supervisors:** Christian Korff

**Relevant research groups:** Algebra, Integrable Systems and Mathematical Physics

This project will look at topics in algebraic combinatorics, for example the ring of symmetric functions, the Robinson-Schensted-Knuth correspondence, crystal graphs, and their implementation in symbolic computational software. An example can be found here:

http://demonstrations.wolfram.com/KirillovReshetikhinCrystals/

Emphasis of the project will be on the efficient design and writing of algorithms with the aim to provide data for open research problems in algebraic combinatorics.

The ideal candidate should have a dual interest in mathematics and computer science and, in particular, already possess some programming experience. As part of the project it is envisaged to spend some time with a private software company to explore a possible commercialisation of the resulting computer packages.

### Cluster Algebras and their implementation on the computer (PhD)

**Supervisors:** Sira Gratz, Christian Korff

**Relevant research groups:** Algebra, Integrable Systems and Mathematical Physics

This project will look at cluster algebras and their implementation in symbolic computational software. An example can be found here:

http://demonstrations.wolfram.com/ClusterAlgebras/

Emphasis of the project will be on the efficient design and writing of algorithms with the aim to provide data for open research problems in cluster algebras as well as their visualisation, e.g. in the context of triangulations of surfaces.

The ideal candidate should have a dual interest in algebra and computer science and, in particular, already possess some programming experience. As part of the project it is envisaged to spend some time with a private software company to explore a possible commercialisation of the resulting computer packages.