Dr Christian Voigt

  • Reader (Mathematics)

telephone: 0141 330 2221
email: Christian.Voigt@glasgow.ac.uk

School of Mathematics, and Statistics, Mathematics building, Room 328

ORCID iDhttps://orcid.org/0000-0003-3225-5633

Research interests

My research area is noncommutative geometry, a modern part of mathematics with connections to classical disciplines like number theory, topology and mathematical physics. I work in particular on problems in operator K-theory, cyclic cohomology and the theory of quantum groups.


Research units

Publications

List by: Type | Date

Jump to: 2021 | 2020 | 2019 | 2017 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007
Number of items: 21.

2021

Brannan, M., Eifler, K., Voigt, C. and Weber, M. (2021) Quantum Cuntz-Krieger algebras. Transactions of the American Mathematical Society, (Accepted for Publication)

Voigt, C. and Yuncken, R. (2021) The Plancherel formula for complex semisimple quantum groups. Annales Scientifiques de l'École Normale Supérieure, (Accepted for Publication)

Voigt, C. (2021) On the assembly map for complex semisimple quantum groups. International Mathematics Research Notices, (doi: 10.1093/imrn/rnaa370) (Early Online Publication)

2020

Antoun, J. and Voigt, C. (2020) On bicolimits of C*-categories. Theory and Applications of Categories, 35(46), pp. 1683-1725.

Voigt, C. and Yuncken, R. (2020) Complex Semisimple Quantum Groups and Representation Theory. Series: Lecture notes in mathematics, 2264. Springer: Cham. ISBN 9783030524623 (doi:10.1007/978-3-030-52463-0)

2019

Monk, A. and Voigt, C. (2019) Complex quantum groups and a deformation of the Baum-Connes assembly map. Transactions of the American Mathematical Society, 371, pp. 8849-8877. (doi: 10.1090/tran/7774)

2017

Voigt, C. (2017) On the structure of quantum automorphism groups. Journal für die Reine und Angewandte Mathematik (Crelles Journal), 732, pp. 255-273. (doi: 10.1515/crelle-2014-0141)

Barlak, S., Szabo, G. and Voigt, C. (2017) The spatial Rokhlin property for actions of compact quantum groups. Journal of Functional Analysis, 272(6), pp. 2308-2360. (doi: 10.1016/j.jfa.2016.09.023)

2015

Bhowmick, J., Voigt, C. and Zacharias, J. (2015) Compact quantum metric spaces from quantum groups of rapid decay. Journal of Noncommutative Geometry, 9(4), pp. 1175-1200. (doi: 10.4171/JNCG/220)

Voigt, C. and Yuncken, R. (2015) Equivariant Fredholm modules for the full quantum flag manifold of SUq(3). Documenta Mathematica, 20, pp. 433-490.

2014

Voigt, C. (2014) Cyclic cohomology and Baaj-Skandalis duality. Journal of K-theory: K-theory and its Applications to Algebra, Geometry and Topology, 13(1), pp. 115-145. (doi: 10.1017/is013012001jkt248)

2013

Vergnioux, R. and Voigt, C. (2013) The K-theory of free quantum groups. Mathematische Annalen, 357(1), pp. 355-400. (doi: 10.1007/s00208-013-0902-9)

2012

Voigt, C. (2012) Quantum SU(2) and the Baum-Connes conjecture. Banach Centre Publications, 98, pp. 417-432. (doi: 10.4064/bc98-0-17)

2011

Voigt, C. (2011) The Baum-Connes conjecture for free orthogonal quantum groups. Advances in Mathematics, 227(5), pp. 1873-1913. (doi: 10.1016/j.aim.2011.04.008)

2010

Nest, R. and Voigt, C. (2010) Equivariant Poincaré duality for quantum group actions. Journal of Functional Analysis, 258(5), pp. 1466-1503. (doi: 10.1016/j.jfa.2009.10.015)

2009

Voigt, C. (2009) Chern character for totally disconnected groups. Mathematische Annalen, 343(3), pp. 507-540. (doi: 10.1007/s00208-008-0281-9)

2008

Voigt, C. (2008) Bornological quantum groups. Pacific Journal of Mathematics, 235(1), pp. 93-135. (doi: 10.2140/pjm.2008.235.93)

Voigt, C. (2008) A new description of equivariant cohomology for totally disconnected groups. Journal of K-theory: K-theory and its Applications to Algebra, Geometry and Topology, 1(3), pp. 431-472. (doi: 10.1017/is007011019jkt020)

Voigt, C. (2008) Equivariant cyclic homology for quantum groups. In: ICM Satellite Conference on K-theory and Noncommutative Geometry, Valladolid, pp. 151-179.

2007

Voigt, C. (2007) Equivariant local cyclic homology and the equivariant Chern-Connes character. Documenta Mathematica, 12, 313-359 (electronic).

Voigt, C. (2007) Equivariant periodic cyclic homology. Journal of the Institute of Mathematics of Jussieu, 6(4), pp. 689-763. (doi: 10.1017/S1474748007000102)

This list was generated on Thu Sep 23 15:44:19 2021 BST.
Number of items: 21.

Articles

Brannan, M., Eifler, K., Voigt, C. and Weber, M. (2021) Quantum Cuntz-Krieger algebras. Transactions of the American Mathematical Society, (Accepted for Publication)

Voigt, C. and Yuncken, R. (2021) The Plancherel formula for complex semisimple quantum groups. Annales Scientifiques de l'École Normale Supérieure, (Accepted for Publication)

Voigt, C. (2021) On the assembly map for complex semisimple quantum groups. International Mathematics Research Notices, (doi: 10.1093/imrn/rnaa370) (Early Online Publication)

Antoun, J. and Voigt, C. (2020) On bicolimits of C*-categories. Theory and Applications of Categories, 35(46), pp. 1683-1725.

Monk, A. and Voigt, C. (2019) Complex quantum groups and a deformation of the Baum-Connes assembly map. Transactions of the American Mathematical Society, 371, pp. 8849-8877. (doi: 10.1090/tran/7774)

Voigt, C. (2017) On the structure of quantum automorphism groups. Journal für die Reine und Angewandte Mathematik (Crelles Journal), 732, pp. 255-273. (doi: 10.1515/crelle-2014-0141)

Barlak, S., Szabo, G. and Voigt, C. (2017) The spatial Rokhlin property for actions of compact quantum groups. Journal of Functional Analysis, 272(6), pp. 2308-2360. (doi: 10.1016/j.jfa.2016.09.023)

Bhowmick, J., Voigt, C. and Zacharias, J. (2015) Compact quantum metric spaces from quantum groups of rapid decay. Journal of Noncommutative Geometry, 9(4), pp. 1175-1200. (doi: 10.4171/JNCG/220)

Voigt, C. and Yuncken, R. (2015) Equivariant Fredholm modules for the full quantum flag manifold of SUq(3). Documenta Mathematica, 20, pp. 433-490.

Voigt, C. (2014) Cyclic cohomology and Baaj-Skandalis duality. Journal of K-theory: K-theory and its Applications to Algebra, Geometry and Topology, 13(1), pp. 115-145. (doi: 10.1017/is013012001jkt248)

Vergnioux, R. and Voigt, C. (2013) The K-theory of free quantum groups. Mathematische Annalen, 357(1), pp. 355-400. (doi: 10.1007/s00208-013-0902-9)

Voigt, C. (2012) Quantum SU(2) and the Baum-Connes conjecture. Banach Centre Publications, 98, pp. 417-432. (doi: 10.4064/bc98-0-17)

Voigt, C. (2011) The Baum-Connes conjecture for free orthogonal quantum groups. Advances in Mathematics, 227(5), pp. 1873-1913. (doi: 10.1016/j.aim.2011.04.008)

Nest, R. and Voigt, C. (2010) Equivariant Poincaré duality for quantum group actions. Journal of Functional Analysis, 258(5), pp. 1466-1503. (doi: 10.1016/j.jfa.2009.10.015)

Voigt, C. (2009) Chern character for totally disconnected groups. Mathematische Annalen, 343(3), pp. 507-540. (doi: 10.1007/s00208-008-0281-9)

Voigt, C. (2008) Bornological quantum groups. Pacific Journal of Mathematics, 235(1), pp. 93-135. (doi: 10.2140/pjm.2008.235.93)

Voigt, C. (2008) A new description of equivariant cohomology for totally disconnected groups. Journal of K-theory: K-theory and its Applications to Algebra, Geometry and Topology, 1(3), pp. 431-472. (doi: 10.1017/is007011019jkt020)

Voigt, C. (2007) Equivariant local cyclic homology and the equivariant Chern-Connes character. Documenta Mathematica, 12, 313-359 (electronic).

Voigt, C. (2007) Equivariant periodic cyclic homology. Journal of the Institute of Mathematics of Jussieu, 6(4), pp. 689-763. (doi: 10.1017/S1474748007000102)

Books

Voigt, C. and Yuncken, R. (2020) Complex Semisimple Quantum Groups and Representation Theory. Series: Lecture notes in mathematics, 2264. Springer: Cham. ISBN 9783030524623 (doi:10.1007/978-3-030-52463-0)

Conference Proceedings

Voigt, C. (2008) Equivariant cyclic homology for quantum groups. In: ICM Satellite Conference on K-theory and Noncommutative Geometry, Valladolid, pp. 151-179.

This list was generated on Thu Sep 23 15:44:19 2021 BST.

Supervision

  • Tanner, Owen
    Topological full groups and continuous orbit equivalence.