Number of items: 8.
2025
Gvirtz-Chen, Damián
ORCID: https://orcid.org/0000-0002-6830-2756 and Skorobogatov, Alexei N.
(2025)
Surfaces defined by pairs of polynomials.
Journal of the European Mathematical Society,
(doi: 10.4171/jems/1696)
(Early Online Publication)
2023
Gvirtz-Chen, Damián
ORCID: https://orcid.org/0000-0002-6830-2756 and Mezzedimi, Giacomo
(2023)
A Hilbert irreducibility theorem for Enriques surfaces.
Transactions of the American Mathematical Society, 376(6),
pp. 3867-3890.
(doi: 10.1090/tran/8831)
2022
Gvirtz, Damian
ORCID: https://orcid.org/0000-0002-6830-2756 and Skorobogatov, Alexei N.
(2022)
Cohomology and the Brauer groups of diagonal surfaces.
Duke Mathematical Journal, 171(6),
pp. 1299-1347.
(doi: 10.1215/00127094-2021-0029)
Blakestad, Clifford, Gvirtz, Damián
ORCID: https://orcid.org/0000-0002-6830-2756, Heuer, Ben, Shchedrina, Daria, Shimizu, Koji, Wear, Peter and Yao, Zijian
(2022)
Perfectoid covers of abelian varieties.
Mathematical Research Letters, 29(3),
pp. 631-662.
(doi: 10.4310/mrl.2022.v29.n3.a2)
2021
Gvirtz, Damian
ORCID: https://orcid.org/0000-0002-6830-2756, Loughran, Daniel and Nakahara, Masahiro
(2021)
Quantitative arithmetic of diagonal degree 2 K3 surfaces.
Mathematische Annalen, 384(1-2),
pp. 1-75.
(doi: 10.1007/s00208-021-02280-w)
2020
Gvirtz, Damian
ORCID: https://orcid.org/0000-0002-6830-2756
(2020)
Arithmetic surjectivity for zero-cycles.
Mathematical Research Letters, 27(5),
pp. 1367-1391.
(doi: 10.4310/mrl.2020.v27.n5.a5)
2019
Gvirtz, Damian
ORCID: https://orcid.org/0000-0002-6830-2756
(2019)
Mazur's conjecture and an unexpected rational curve on Kummer surfaces and their superelliptic generalisations.
Acta Arithmetica, 187(2),
pp. 189-200.
(doi: 10.4064/aa180201-1-10)
2016
Böckle, Gebhard and Gvirtz, Damian
ORCID: https://orcid.org/0000-0002-6830-2756
(2016)
Division algebras and maximal orders for given invariants.
LMS Journal of Computation and Mathematics, 19(A),
pp. 178-195.
(doi: 10.1112/s1461157016000310)
This list was generated on Fri Nov 14 20:21:20 2025 GMT.