A generalised Dixmier-Moeglin equivalence for quantum Schubert cells.

Brendan Nolan (University of Kent)

Wednesday 27th January, 2016 16:00-17:00 Maths 522


In the late 1970s and early 1980s, Dixmier and Moeglin gave algebraic and topological conditions for recognising the primitive ideals (namely the kernels of the irreducible representations) of the enveloping algebra of a finite-dimensional complex Lie algebra; they showed that the primitive, rational, and locally closed ideals coincide. In modern terminology, such algebras are said to satisfy the "Dixmier-Moeglin equivalence". Many interesting families of algebras, including many families of quantum algebras, have since been shown to satisfy this equivalence.

 I will outline work of Jason Bell, Stephane Launois, and myself, showing that in several families of quantum algebras, an arbitrary prime ideal is equally close (in a manner which I will make precise) to being primitive, rational, and locally closed. The family on which I shall focus is that of the quantum Schubert cells U_q [w]. For a simple complex Lie algebra g, a scalar q which is not a root of unity, and an element w of the Weyl group of g, U_q [w] is a subalgebra of U_q^+(g) constructed by De Concini, Kac, and Procesi; familiar examples include the algebras of quantum matrices.

Add to your calendar

Download event information as iCalendar file (only this event)