Dr Zaiqiao Meng

  • Lecturer, BetaRecSys Project Collaborator (School of Computing Science)

Biography

I am currently a Lecturer (Assistant Professor) of the University of Glasgow, based within the world-leading Information Retrieval group and IDA section of School of Computing Science. I am also an affiliated lecturer at the Language Technology Lab of University of Cambridge. Prior to that, I was a Postdoctoral Researcher (Research Associate) at the Language Technology Laboratory (LTL) of the University of Cambridge; and a Postdoctoral Researcher (Research Assistant ) at the Terrier team of the University of Glasgow (UoG). 

I obtained my Ph.D in computer science from Sun Yat-sen University (SYSU) in December 2018. I also have been a visiting PhD student at the MINE lab of KAUST.

 

Research interests

My research focuses on the intersection of machine learning, knowledge graph, and natural language processing, with a current emphasis on the biomedical applications.

  • Geometric Deep Learning (Graph Neural Networks).
  • Knowledge Graph Construction, Utilisation and Reasoning.
  • Natural Language Processing.
  • Recommender Systems.
  • Healthcare Related Applications (e.g. Disease Outbreak Surveillance and Drug Discovery).

Publications

List by: Type | Date

Jump to: 2023 | 2022 | 2021 | 2020 | 2019
Number of items: 16.

2023

Liu, S., Meng, Z. , Macdonald, C. and Ounis, I. (2023) Graph neural pre-training for recommendation with side information. ACM Transactions on Information Systems, 41(3), 74. (doi: 10.1145/3568953)

Wang, Y., Chen, X., Fang, J., Meng, Z. and Liang, S. (2023) Enhancing conversational recommendation systems with representation fusion. ACM Transactions on the Web, 17(1), 6. (doi: 10.1145/3577034)

Yuan, Z., Hu, S., Vulic, I., Korhonen, A. and Meng, Z. (2023) Can Pretrained Language Models (Yet) Reason Deductively? In: 17th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2023), Dubrovnik, Croatia, 2-6 May 2023, (Accepted for Publication)

2022

Chen, G., Liu, F., Meng, Z. and Liang, S. (2022) Revisiting Parameter-Efficient Tuning: Are We Really There Yet? In: 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP 2022), Abu Dhabi, 7-11 Dec 2022, (Accepted for Publication)

Meng, Z. et al. (2022) BioCaster in 2021: automatic disease outbreaks detection from global news media. Bioinformatics, 38(18), pp. 4446-4448. (doi: 10.1093/bioinformatics/btac497) (PMID:35900173) (PMCID:PMC9477518)

Tang, S., Meng, Z. and Liang, S. (2022) Dynamic co-embedding model for temporal attributed networks. IEEE Transactions on Neural Networks and Learning Systems, (doi: 10.1109/TNNLS.2022.3193564) (Early Online Publication)

Meng, Z. , Liu, F., Shareghi, E., Su, Y., Collins, C. and Collier, N. (2022) Rewire-then-Probe: A Contrastive Recipe for Probing Biomedical Knowledge of Pre-trained Language Models. In: 60th Annual Meeting of the Association for Computational Linguistics (ACL 2022), Dublin, Ireland, 22-27 May 2022, pp. 4798-4810.

Wang, Y., Xin, X., Meng, Z. , Jose, J. M. , Feng, F. and He, X. (2022) Learning Robust Recommenders Through Cross-Model Agreement. In: ACM Web Conference 2022, Lyon, France, 25-29 April 2022, pp. 2015-2025. ISBN 9781450390965 (doi: 10.1145/3485447.3512202)

Liang, S., Luo, Y. and Meng, Z. (2022) Profiling users for question answering communities via flow-based constrained co-embedding model. ACM Transactions on Information Systems, 40(2), 34. (doi: 10.1145/3470565)

2021

Meng, Z. , McCreadie, R. , Macdonald, C. and Ounis, I. (2021) Variational Bayesian representation learning for grocery recommendation. Information Retrieval, 24(4-5), pp. 347-369. (doi: 10.1007/s10791-021-09397-1)

2020

Meng, Z. , Mccreadie, R. , Macdonald, C. and Ounis, I. (2020) Exploring Data Splitting Strategies for the Evaluation of Recommendation Models. In: 14th ACM Conference on Recommender Systems (RecSys 2020), 22-26 Sep 2020, pp. 681-686. ISBN 9781450375832 (doi: 10.1145/3383313.3418479)

Meng, Z. et al. (2020) BETA-Rec: Build, Evaluate and Tune Automated Recommender Systems. In: 14th ACM Conference on Recommender Systems (RecSys 2020), 22-26 Sep 2020, pp. 588-590. ISBN 9781450375832 (doi: 10.1145/3383313.3411524)

Huang, H., Meng, Z. and Liang, S. (2020) Recurrent neural variational model for follower-based influence maximization. Information Sciences, 528, pp. 280-293. (doi: 10.1016/j.ins.2020.04.023)

Liu, S., Ounis, I. , Macdonald, C. and Meng, Z. (2020) A Heterogeneous Graph Neural Model for Cold-Start Recommendation. In: 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2020), Xi'an, China, 25-30 Jul 2020, pp. 2029-2032. ISBN 9781450380164 (doi: 10.1145/3397271.3401252)

2019

Meng, Z. , McCreadie, R. , Macdonald, C. and Ounis, I. (2019) Variational Bayesian Context-aware Representation for Grocery Recommendation. In: 13th ACM Conference on Recommender Systems (RecSys19) - CARS 2019 Workshop, Copenhagen, Denmark, 16-20 Sept 2019,

Meng, Z. , Liang, S., Fang, J. and Xiao, T. (2019) Semi-supervisedly Co-embedding Attributed Networks. In: Thirty-third Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada, 08-14 Dec 2019,

This list was generated on Sat Apr 1 19:56:20 2023 BST.
Number of items: 16.

Articles

Liu, S., Meng, Z. , Macdonald, C. and Ounis, I. (2023) Graph neural pre-training for recommendation with side information. ACM Transactions on Information Systems, 41(3), 74. (doi: 10.1145/3568953)

Wang, Y., Chen, X., Fang, J., Meng, Z. and Liang, S. (2023) Enhancing conversational recommendation systems with representation fusion. ACM Transactions on the Web, 17(1), 6. (doi: 10.1145/3577034)

Meng, Z. et al. (2022) BioCaster in 2021: automatic disease outbreaks detection from global news media. Bioinformatics, 38(18), pp. 4446-4448. (doi: 10.1093/bioinformatics/btac497) (PMID:35900173) (PMCID:PMC9477518)

Tang, S., Meng, Z. and Liang, S. (2022) Dynamic co-embedding model for temporal attributed networks. IEEE Transactions on Neural Networks and Learning Systems, (doi: 10.1109/TNNLS.2022.3193564) (Early Online Publication)

Liang, S., Luo, Y. and Meng, Z. (2022) Profiling users for question answering communities via flow-based constrained co-embedding model. ACM Transactions on Information Systems, 40(2), 34. (doi: 10.1145/3470565)

Meng, Z. , McCreadie, R. , Macdonald, C. and Ounis, I. (2021) Variational Bayesian representation learning for grocery recommendation. Information Retrieval, 24(4-5), pp. 347-369. (doi: 10.1007/s10791-021-09397-1)

Huang, H., Meng, Z. and Liang, S. (2020) Recurrent neural variational model for follower-based influence maximization. Information Sciences, 528, pp. 280-293. (doi: 10.1016/j.ins.2020.04.023)

Conference Proceedings

Yuan, Z., Hu, S., Vulic, I., Korhonen, A. and Meng, Z. (2023) Can Pretrained Language Models (Yet) Reason Deductively? In: 17th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2023), Dubrovnik, Croatia, 2-6 May 2023, (Accepted for Publication)

Chen, G., Liu, F., Meng, Z. and Liang, S. (2022) Revisiting Parameter-Efficient Tuning: Are We Really There Yet? In: 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP 2022), Abu Dhabi, 7-11 Dec 2022, (Accepted for Publication)

Meng, Z. , Liu, F., Shareghi, E., Su, Y., Collins, C. and Collier, N. (2022) Rewire-then-Probe: A Contrastive Recipe for Probing Biomedical Knowledge of Pre-trained Language Models. In: 60th Annual Meeting of the Association for Computational Linguistics (ACL 2022), Dublin, Ireland, 22-27 May 2022, pp. 4798-4810.

Wang, Y., Xin, X., Meng, Z. , Jose, J. M. , Feng, F. and He, X. (2022) Learning Robust Recommenders Through Cross-Model Agreement. In: ACM Web Conference 2022, Lyon, France, 25-29 April 2022, pp. 2015-2025. ISBN 9781450390965 (doi: 10.1145/3485447.3512202)

Meng, Z. , Mccreadie, R. , Macdonald, C. and Ounis, I. (2020) Exploring Data Splitting Strategies for the Evaluation of Recommendation Models. In: 14th ACM Conference on Recommender Systems (RecSys 2020), 22-26 Sep 2020, pp. 681-686. ISBN 9781450375832 (doi: 10.1145/3383313.3418479)

Meng, Z. et al. (2020) BETA-Rec: Build, Evaluate and Tune Automated Recommender Systems. In: 14th ACM Conference on Recommender Systems (RecSys 2020), 22-26 Sep 2020, pp. 588-590. ISBN 9781450375832 (doi: 10.1145/3383313.3411524)

Liu, S., Ounis, I. , Macdonald, C. and Meng, Z. (2020) A Heterogeneous Graph Neural Model for Cold-Start Recommendation. In: 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2020), Xi'an, China, 25-30 Jul 2020, pp. 2029-2032. ISBN 9781450380164 (doi: 10.1145/3397271.3401252)

Meng, Z. , McCreadie, R. , Macdonald, C. and Ounis, I. (2019) Variational Bayesian Context-aware Representation for Grocery Recommendation. In: 13th ACM Conference on Recommender Systems (RecSys19) - CARS 2019 Workshop, Copenhagen, Denmark, 16-20 Sept 2019,

Meng, Z. , Liang, S., Fang, J. and Xiao, T. (2019) Semi-supervisedly Co-embedding Attributed Networks. In: Thirty-third Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada, 08-14 Dec 2019,

This list was generated on Sat Apr 1 19:56:20 2023 BST.

Supervision

  • Fang, Jinyuan
    Adversarial Attacks and Defenses on Multi-Relational Graphs

Teaching

  • Recommender Systems (H) (COMPSCI4075(21-22))
  • Recommender Systems (M) (COMPSCI5091(21-22))
  • Introduction to Data Science and Systems (M) (COMPSCI5089(22-23))