Dr Agnieszka Borowska
- Research Associate (Statistics)
Research interests
Publications
2020
Borowska, A. , Giurghita, D. and Husmeier, D. (2020) Gaussian process enhanced semi-automatic approximate Bayesian computation: parameter inference in a stochastic differential equation system for chemotaxis. Journal of Computational Physics, (doi: 10.1016/j.jcp.2020.109999) (In Press)
Borowska, A. , Hoogerheide, L., Koopman, S. J. and van Dijk, H. K. (2020) Partially censored posterior for robust and efficient risk evaluation. Journal of Econometrics, 217(2), pp. 335-355. (doi: 10.1016/j.jeconom.2019.12.007)
2019
Husmeier, D. , Lazarus, A., Noè, U. , Davies, V. , Borowska, A. , Macdonald, B. , Gao, H. , Berry, C. and Luo, X. (2019) Statistical Emulation of Cardiac Mechanics: an Important Step Towards a Clinical Decision Support System. In: International Conference on Statistics: Theory and Applications (ICSTA’19), Lisbon, Portugal, 13-14 Aug 2019, p. 29. ISBN 9781927877647 (doi:10.11159/icsta19.29)
Romaszko, L., Borowska, A. , Lazarus, A., Gao, H. , Luo, X. and Husmeier, D. (2019) Direct Learning Left Ventricular Meshes from CMR Images. In: International Conference on Statistics: Theory and Applications (ICSTA’19), Lisbon, Portugal, 13-14 Aug 2019, p. 25. ISBN 9781927877647 (doi:10.11159/icsta19.25)
Romaszko, L., Lazarus, A., Gao, H. , Borowska, A. , Luo, X. and Husmeier, D. (2019) Massive Dimensionality Reduction for the Left Ventricular Mesh. In: International Conference on Statistics: Theory and Applications (ICSTA’19), Lisbon, Portugal, 13-14 Aug 2019, p. 24. ISBN 9781927877647 (doi:10.11159/icsta19.24)
Baştürk, N., Borowska, A. , Grassi, S., Hoogerheide, L. and van Dijk, H.K. (2019) Forecast density combinations of dynamic models and data driven portfolio strategies. Journal of Econometrics, 210, pp. 170-186. (doi: 10.1016/j.jeconom.2018.11.011)
Borowska, A. , Hoogerheide, L. F. and Koopman, S. J. (2019) Bayesian Risk Forecasting for Long Horizons. Discussion Paper. Tinbergen Institute.
2018
Barra, I., Borowska, A. and Koopman, S. J. (2018) Bayesian dynamic modeling of high-frequency integer price changes. Journal of Financial Econometrics, 16(3), pp. 384-424. (doi: 10.1093/jjfinec/nby010)
Articles
Borowska, A. , Giurghita, D. and Husmeier, D. (2020) Gaussian process enhanced semi-automatic approximate Bayesian computation: parameter inference in a stochastic differential equation system for chemotaxis. Journal of Computational Physics, (doi: 10.1016/j.jcp.2020.109999) (In Press)
Borowska, A. , Hoogerheide, L., Koopman, S. J. and van Dijk, H. K. (2020) Partially censored posterior for robust and efficient risk evaluation. Journal of Econometrics, 217(2), pp. 335-355. (doi: 10.1016/j.jeconom.2019.12.007)
Baştürk, N., Borowska, A. , Grassi, S., Hoogerheide, L. and van Dijk, H.K. (2019) Forecast density combinations of dynamic models and data driven portfolio strategies. Journal of Econometrics, 210, pp. 170-186. (doi: 10.1016/j.jeconom.2018.11.011)
Barra, I., Borowska, A. and Koopman, S. J. (2018) Bayesian dynamic modeling of high-frequency integer price changes. Journal of Financial Econometrics, 16(3), pp. 384-424. (doi: 10.1093/jjfinec/nby010)
Research Reports or Papers
Borowska, A. , Hoogerheide, L. F. and Koopman, S. J. (2019) Bayesian Risk Forecasting for Long Horizons. Discussion Paper. Tinbergen Institute.
Conference Proceedings
Husmeier, D. , Lazarus, A., Noè, U. , Davies, V. , Borowska, A. , Macdonald, B. , Gao, H. , Berry, C. and Luo, X. (2019) Statistical Emulation of Cardiac Mechanics: an Important Step Towards a Clinical Decision Support System. In: International Conference on Statistics: Theory and Applications (ICSTA’19), Lisbon, Portugal, 13-14 Aug 2019, p. 29. ISBN 9781927877647 (doi:10.11159/icsta19.29)
Romaszko, L., Borowska, A. , Lazarus, A., Gao, H. , Luo, X. and Husmeier, D. (2019) Direct Learning Left Ventricular Meshes from CMR Images. In: International Conference on Statistics: Theory and Applications (ICSTA’19), Lisbon, Portugal, 13-14 Aug 2019, p. 25. ISBN 9781927877647 (doi:10.11159/icsta19.25)
Romaszko, L., Lazarus, A., Gao, H. , Borowska, A. , Luo, X. and Husmeier, D. (2019) Massive Dimensionality Reduction for the Left Ventricular Mesh. In: International Conference on Statistics: Theory and Applications (ICSTA’19), Lisbon, Portugal, 13-14 Aug 2019, p. 24. ISBN 9781927877647 (doi:10.11159/icsta19.24)