Dr Luca Sapienza

  • Reader (Electronic & Nanoscale Engineering)

telephone: 0141 330 1429
email: Luca.Sapienza@glasgow.ac.uk

Biography

Dr Luca Sapienza is a Reader in Quantum Technologies at the James Watt School of Engineering and he is a member of the Centre for Quantum Technology of the University of Glasgow.

He is leading the Integrated Quantum Photonics research group whose activities focus on the fundamental understanding of quantum optics effects on a chip, the development of quantum and nano-photonic devices integrating single-photon emitters and the study of quantum effects in bio-molecules. 
Research activities span electromagnetic simulation, nanofabrication and optical characterisation, by means of time-resolved micro-photoluminescence spectroscopy, down to cryogenic temperatures.
Device technology is based on III-V, silicon, silicon nitride and hybrid material systems to realise photonic crystal and plasmonic waveguides, optical cavities and resonators.

Prior to joining the University of Glasgow, Luca was an Associate Professor of Physics at the University of Southampton (United Kingdom) and he has held visiting positions at the National Institute of Standards and Technology (USA) and at the Ecole Normale Superieure de Paris (France). 

Research interests

Luca is leading the Integrated Quantum Photonics research group whose activities focus on the fundamental understanding of quantum optics effects on a chip, the development of quantum and nano-photonic devices integrating single-photon emitters and the study of quantum effects in bio-molecules. 
Research activities span electromagnetic simulation, nanofabrication and optical characterisation, by means of time-resolved micro-photoluminescence spectroscopy, down to cryogenic temperatures.
Device technology is based on III-V, silicon, silicon nitride and hybrid material systems to realise photonic crystal and plasmonic waveguides, optical cavities and resonators.

Publications

List by: Type | Date

Jump to: 2022 | 2017 | 2016 | 2015 | 2012
Number of items: 5.

2022

Haws, C. , Guha, B., Perez, E., Davanco, M., Song, J. D., Srinivasan, K. and Sapienza, L. (2022) Thermal release tape-assisted semiconductor membrane transfer process for hybrid photonic devices embedding quantum emitters. Materials for Quantum Technology, 2(2), 025003. (doi: 10.1088/2633-4356/ac603e)

2017

Sapienza, L., Liu, J., Song, J. D., Fält, S., Wegscheider, W., Badolato, A. and Srinivasan, K. (2017) Combined atomic force microscopy and photoluminescence imaging to select single InAs/GaAs quantum dots for quantum photonic devices. Scientific Reports, 7, 6205. (doi: 10.1038/s41598-017-06566-5) (PMID:28740160) (PMCID:PMC5524751)

2016

Sapienza, L., Al-Khuzheyri, R., Dada, A. , Griffiths, A., Clarke, E. and Gerardot, B. D. (2016) Magneto-optical spectroscopy of single charge-tunable InAs/GaAs quantum dots emitting at telecom wavelengths. Physical Review B, 93(15), 155301. (doi: 10.1103/PhysRevB.93.155301)

2015

Sapienza, L., Davanço, M., Badolato, A. and Srinivasan, K. (2015) Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission. Nature Communications, 6(1), 7833. (doi: 10.1038/ncomms8833) (PMID:26211442) (PMCID:PMC4525159)

2012

Ates, S., Sapienza, L., Davanco, M., Badolato, A. and Srinivasan, K. (2012) Bright single-photon emission from a quantum dot in a circular Bragg grating microcavity. IEEE Journal of Selected Topics in Quantum Electronics, 18(6), pp. 1711-1721. (doi: 10.1109/JSTQE.2012.2193877)

This list was generated on Mon May 23 21:42:19 2022 BST.
Jump to: Articles
Number of items: 5.

Articles

Haws, C. , Guha, B., Perez, E., Davanco, M., Song, J. D., Srinivasan, K. and Sapienza, L. (2022) Thermal release tape-assisted semiconductor membrane transfer process for hybrid photonic devices embedding quantum emitters. Materials for Quantum Technology, 2(2), 025003. (doi: 10.1088/2633-4356/ac603e)

Sapienza, L., Liu, J., Song, J. D., Fält, S., Wegscheider, W., Badolato, A. and Srinivasan, K. (2017) Combined atomic force microscopy and photoluminescence imaging to select single InAs/GaAs quantum dots for quantum photonic devices. Scientific Reports, 7, 6205. (doi: 10.1038/s41598-017-06566-5) (PMID:28740160) (PMCID:PMC5524751)

Sapienza, L., Al-Khuzheyri, R., Dada, A. , Griffiths, A., Clarke, E. and Gerardot, B. D. (2016) Magneto-optical spectroscopy of single charge-tunable InAs/GaAs quantum dots emitting at telecom wavelengths. Physical Review B, 93(15), 155301. (doi: 10.1103/PhysRevB.93.155301)

Sapienza, L., Davanço, M., Badolato, A. and Srinivasan, K. (2015) Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission. Nature Communications, 6(1), 7833. (doi: 10.1038/ncomms8833) (PMID:26211442) (PMCID:PMC4525159)

Ates, S., Sapienza, L., Davanco, M., Badolato, A. and Srinivasan, K. (2012) Bright single-photon emission from a quantum dot in a circular Bragg grating microcavity. IEEE Journal of Selected Topics in Quantum Electronics, 18(6), pp. 1711-1721. (doi: 10.1109/JSTQE.2012.2193877)

This list was generated on Mon May 23 21:42:19 2022 BST.

Supervision

We welcome applications from self-motivated students and postdoctoral researchers interested in working on fundamental quantum optics effects on a chip, nano and quantum photonic devices, electromagnetic simulations, nanofabrication and quantum biology.

Open positions can be found on our research group website: https://sites.google.com/view/integrated-quantum

Open PhD positions can be found here:

 Current supervised project:

Additional information

More information can be found on our research group website:

Integrated Quantum Photonics research group

For more information, please contact Luca at: Luca.Sapienza@glasgow.ac.uk