Dr Chun Hean Lee

  • Lecturer (Infrastructure & Environment)

Research interests

Biography

I graduated with a BEng in Civil Engineering from Swansea University in 2007, followed by a PhD from the same institution. My PhD focused on the proof-of-concept development of a new system of first order conservation laws for computational solid dynamics (http://ukacm.org/wp-content/uploads/phdThesis/2012_CHLee.pdf). After graduating in 2012, I joined the EU funded “ASTUTE” project. In 2015, I was appointed as a Ser Cymru Research Fellow of the Zienkiewicz Centre for Computational Engineering at Swansea University.

I am currently a lecturer for the School of Engineering and a member of the Glasgow Computational Engineering Centre (https://www.gla.ac.uk/research/az/gcec/), a subgroup of the Infrastructure and Environment Research Division.

Research Interest

My research interests are in computational mechanics, with special emphasis on the development, analysis and application of non-conventional computational methods for large strain fast solid dynamics. Specifically, a new computational paradigm is established on the basis of a new set of physical laws. These laws can be re-formulated as a system of first order conservation laws, with a similar structure to the mathematical equations used in CFD. The new approach lays the foundation for a unified modelling of multiple physics problems, including thermo-elasticity, fluid structure interaction and electromechanics. I am also interested in developing new computational methods for modelling of protection systems subjected to hyper-velocity impact. The applications include high strain rate material failure, gas pipe explosions/implosions and spacecraft shielding.


Grants

  • H2020 Marie Curie ETN, 2017-2021                                     Title: Industrial decision-making on complex production technologies supported by simulation-based engineering (ProTechTion). Total budget: €3.83 M. Estimated budget allocated to Swansea University: €546.5 K, Co-I at Swansea University.
  • Sêr Cymru National Research Network Early Career Personal Fellowship award, 2015-2018                                                 Title: Bridging the gap between computational fluid and solid dynamics: embedding advanced technologies into Welsh industries through massive parallelisation, £150.0 K, PI.

Supervision

  • A new computational tool for multi-material solid dynamics  (To be appointed)                                                        Other supervisor: Professor Antonio J. Gil.
  • Towards the next generation of dynamic fracture solver in Engineering  (To be appointed)                                                    Other supervisor: Professor Antonio J. Gil.
  • A first order hyperbolic framework for thermo-elasticity and thermo-plasticity (current)                                                    Student name: Ataollah Ghavamian.                                            Other supervisor: Professor Antonio J. Gil.
  • A vertex centred finite volume algorithm for fast dynamics: Total and Updated Lagrangian descriptions (current)               Student name: Osama I. Hassan                                                Other supervisor: Professor Antonio J. Gil.
  • An upwind cell centred finite volume method for large strain explicit solid dynamics in OpenFOAM (awarded in 2018)          Student name: Jibran Haider.                                                  Other supervisor: Professor Antonio J. Gil.

           


Teaching

  • Mechanis of Structures 2A

Publications

List by: Type | Date

Jump to: 2018 | 2017 | 2016 | 2015 | 2014 | 2013
Number of items: 13.

2018

Haider, J., Lee, C. H. , Gil, A. J., Huerta, A. and Bonet, J. (2018) An upwind cell centred Total Lagrangian finite volume algorithm for nearly incompressible explicit fast solid dynamic applications. Computer Methods in Applied Mechanics and Engineering, 340, pp. 684-727. (doi:10.1016/j.cma.2018.06.010)

Lee, C. H. , Gil, A. J., Ghavamian, A. and Bonet, J. (2018) A Total Lagrangian upwind Smooth Particle Hydrodynamics algorithm for large strain explicit solid dynamics. Computer Methods in Applied Mechanics and Engineering, (Accepted for Publication)

2017

Lee, C. H. , Gil, A. J., Hassan, O. I., Bonet, J. and Kulasegaram, S. (2017) A variationally consistent Streamline Upwind Petrov–Galerkin Smooth Particle Hydrodynamics algorithm for large strain solid dynamics. Computer Methods in Applied Mechanics and Engineering, 318, pp. 514-536. (doi:10.1016/j.cma.2017.02.002)

Haider, J., Lee, C. H. , Gil, A. J. and Bonet, J. (2017) A first-order hyperbolic framework for large strain computational solid dynamics: an upwind cell centred Total Lagrangian scheme. International Journal for Numerical Methods in Engineering, 109(3), pp. 407-456. (doi:10.1002/nme.5293)

2016

Lee, C. H. , Gil, A. J., Greto, G., Kulasegaram, S. and Bonet, J. (2016) A new Jameson–Schmidt–Turkel Smooth Particle Hydrodynamics algorithm for large strain explicit fast dynamics. Computer Methods in Applied Mechanics and Engineering, 311, pp. 71-111. (doi:10.1016/j.cma.2016.07.033)

Ortigosa, R., Gil, A. J. and Lee, C. H. (2016) A computational framework for large strain nearly and truly incompressible electromechanics based on convex multi-variable strain energies. Computer Methods in Applied Mechanics and Engineering, 310, pp. 297-334. (doi:10.1016/j.cma.2016.06.025)

Gil, A. J., Lee, C. H. , Bonet, J. and Ortigosa, R. (2016) A first order hyperbolic framework for large strain computational solid dynamics. Part II: total Lagrangian compressible, nearly incompressible and truly incompressible elasticity. Computer Methods in Applied Mechanics and Engineering, 300, pp. 146-181. (doi:10.1016/j.cma.2015.11.010)

2015

Aguirre, M., Gil, A. J., Bonet, J. and Lee, C. H. (2015) An upwind vertex centred finite volume solver for Lagrangian solid dynamics. Journal of Computational Physics, 300, pp. 387-422. (doi:10.1016/j.jcp.2015.07.029)

Bonet, J., Gil, A. J., Lee, C. H. , Aguirre, M. and Ortigosa, R. (2015) A first order hyperbolic framework for large strain computational solid dynamics. Part I: total Lagrangian isothermal elasticity. Computer Methods in Applied Mechanics and Engineering, 283, pp. 689-732. (doi:10.1016/j.cma.2014.09.024)

2014

Gil, A. J., Lee, C. H. , Bonet, J. and Aguirre, M. (2014) A stabilised Petrov–Galerkin formulation for linear tetrahedral elements in compressible, nearly incompressible and truly incompressible fast dynamics. Computer Methods in Applied Mechanics and Engineering, 276, pp. 659-690. (doi:10.1016/j.cma.2014.04.006)

Karim, I. A., Lee, C. H. , Gil, A. J. and Bonet, J. (2014) A two-step Taylor-Galerkin formulation for fast dynamics. Engineering Computations, 31(3), pp. 366-387. (doi:10.1108/EC-12-2012-0319)

Lee, C. H. , Gil, A. J. and Bonet, J. (2014) Development of a stabilised Petrov–Galerkin formulation for conservation laws in Lagrangian fast solid dynamics. Computer Methods in Applied Mechanics and Engineering, 268, pp. 40-64. (doi:10.1016/j.cma.2013.09.004)

2013

Lee, C. H. , Gil, A. J. and Bonet, J. (2013) Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics. Computers and Structures, 118, pp. 13-38. (doi:10.1016/j.compstruc.2012.12.008)

This list was generated on Mon Oct 15 22:54:22 2018 BST.
Jump to: Articles
Number of items: 13.

Articles

Haider, J., Lee, C. H. , Gil, A. J., Huerta, A. and Bonet, J. (2018) An upwind cell centred Total Lagrangian finite volume algorithm for nearly incompressible explicit fast solid dynamic applications. Computer Methods in Applied Mechanics and Engineering, 340, pp. 684-727. (doi:10.1016/j.cma.2018.06.010)

Lee, C. H. , Gil, A. J., Ghavamian, A. and Bonet, J. (2018) A Total Lagrangian upwind Smooth Particle Hydrodynamics algorithm for large strain explicit solid dynamics. Computer Methods in Applied Mechanics and Engineering, (Accepted for Publication)

Lee, C. H. , Gil, A. J., Hassan, O. I., Bonet, J. and Kulasegaram, S. (2017) A variationally consistent Streamline Upwind Petrov–Galerkin Smooth Particle Hydrodynamics algorithm for large strain solid dynamics. Computer Methods in Applied Mechanics and Engineering, 318, pp. 514-536. (doi:10.1016/j.cma.2017.02.002)

Haider, J., Lee, C. H. , Gil, A. J. and Bonet, J. (2017) A first-order hyperbolic framework for large strain computational solid dynamics: an upwind cell centred Total Lagrangian scheme. International Journal for Numerical Methods in Engineering, 109(3), pp. 407-456. (doi:10.1002/nme.5293)

Lee, C. H. , Gil, A. J., Greto, G., Kulasegaram, S. and Bonet, J. (2016) A new Jameson–Schmidt–Turkel Smooth Particle Hydrodynamics algorithm for large strain explicit fast dynamics. Computer Methods in Applied Mechanics and Engineering, 311, pp. 71-111. (doi:10.1016/j.cma.2016.07.033)

Ortigosa, R., Gil, A. J. and Lee, C. H. (2016) A computational framework for large strain nearly and truly incompressible electromechanics based on convex multi-variable strain energies. Computer Methods in Applied Mechanics and Engineering, 310, pp. 297-334. (doi:10.1016/j.cma.2016.06.025)

Gil, A. J., Lee, C. H. , Bonet, J. and Ortigosa, R. (2016) A first order hyperbolic framework for large strain computational solid dynamics. Part II: total Lagrangian compressible, nearly incompressible and truly incompressible elasticity. Computer Methods in Applied Mechanics and Engineering, 300, pp. 146-181. (doi:10.1016/j.cma.2015.11.010)

Aguirre, M., Gil, A. J., Bonet, J. and Lee, C. H. (2015) An upwind vertex centred finite volume solver for Lagrangian solid dynamics. Journal of Computational Physics, 300, pp. 387-422. (doi:10.1016/j.jcp.2015.07.029)

Bonet, J., Gil, A. J., Lee, C. H. , Aguirre, M. and Ortigosa, R. (2015) A first order hyperbolic framework for large strain computational solid dynamics. Part I: total Lagrangian isothermal elasticity. Computer Methods in Applied Mechanics and Engineering, 283, pp. 689-732. (doi:10.1016/j.cma.2014.09.024)

Gil, A. J., Lee, C. H. , Bonet, J. and Aguirre, M. (2014) A stabilised Petrov–Galerkin formulation for linear tetrahedral elements in compressible, nearly incompressible and truly incompressible fast dynamics. Computer Methods in Applied Mechanics and Engineering, 276, pp. 659-690. (doi:10.1016/j.cma.2014.04.006)

Karim, I. A., Lee, C. H. , Gil, A. J. and Bonet, J. (2014) A two-step Taylor-Galerkin formulation for fast dynamics. Engineering Computations, 31(3), pp. 366-387. (doi:10.1108/EC-12-2012-0319)

Lee, C. H. , Gil, A. J. and Bonet, J. (2014) Development of a stabilised Petrov–Galerkin formulation for conservation laws in Lagrangian fast solid dynamics. Computer Methods in Applied Mechanics and Engineering, 268, pp. 40-64. (doi:10.1016/j.cma.2013.09.004)

Lee, C. H. , Gil, A. J. and Bonet, J. (2013) Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics. Computers and Structures, 118, pp. 13-38. (doi:10.1016/j.compstruc.2012.12.008)

This list was generated on Mon Oct 15 22:54:22 2018 BST.