Dr Chun Hean Lee

  • Senior Lecturer (Infrastructure & Environment)

Research interests

Biography

I am a Senior Lecturer for the James Watt School of Engineering and a member of the Glasgow Computational Engineering Centre (https://www.gla.ac.uk/research/az/gcec/), a subgroup of the Infrastructure and Environment Research Division.

I graduated with a BEng in Civil Engineering from Swansea University in 2007, followed by a PhD from the same institution. My PhD focused on the proof-of-concept development of a new system of first order conservation laws for computational solid dynamics (http://ukacm.org/wp-content/uploads/phdThesis/2012_CHLee.pdf). After graduating in 2012, I joined the EU funded “ASTUTE” project. In 2015, I was appointed as a Ser Cymru Research Fellow of the Zienkiewicz Centre for Computational Engineering at Swansea University.

Research Interest

My research interests are in computational mechanics, with special emphasis on the development, analysis and application of non-conventional computational methods for large strain fast solid dynamics. Specifically, a new computational paradigm is established on the basis of a new set of physical laws. These laws can be re-formulated as a system of first order conservation laws, with a similar structure to the mathematical equations used in CFD. The new approach lays the foundation for a unified modelling of multiple physics problems, including thermo-elasticity, fluid structure interaction and electromechanics. I am also interested in developing new computational methods for modelling of protection systems subjected to hyper-velocity impact. The applications include high strain rate material failure, gas pipe explosions/implosions and spacecraft shielding.

Publications

List by: Type | Date

Jump to: 2024 | 2023 | 2022 | 2021 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013
Number of items: 25.

2024

Di Giusto, T. B.J., Lee, C. H. , Gil, A.J., Bonet, J. and Giacomini, M. (2024) A first-order hyperbolic arbitrary Lagrangian Eulerian conservation formulation for non-linear solid dynamics. International Journal for Numerical Methods in Engineering, (Accepted for Publication)

2023

Khayyer, A., Shimizu, Y., Lee, C. H. , Gil, A., Gotoh, H. and Bonet, J. (2023) An improved updated Lagrangian SPH method for structural modelling. Computational Particle Mechanics, (doi: 10.1007/s40571-023-00673-z) (Early Online Publication)

Lee, C. H. , Refachinho de Campos, P. R., Gil, A. J., Giacomini, M. and Bonet, J. (2023) An entropy-stable updated reference Lagrangian smoothed particle hydrodynamics algorithm for thermo-elasticity and thermo-visco-plasticity. Computational Particle Mechanics, 10, pp. 1493-1531. (doi: 10.1007/s40571-023-00564-3)

2022

Runcie, C. J., Lee, C. H. , Haider, J., Gil, A. J. and Bonet, J. (2022) An acoustic Riemann solver for large strain computational contact dynamics. International Journal for Numerical Methods in Engineering, 123(23), pp. 5700-5748. (doi: 10.1002/nme.7085)

Liu, X., Lee, C.H. and Grassl, P. (2022) On the Modelling of the Rate Dependence of Strength Using a Crack-band Based Damage Model for Concrete. In: Meschke, G., Pichler, B. and Rots, J. G. (eds.) Computational Modelling of Concrete and Concrete Structures. CRC Press: London, pp. 520-524. ISBN 9781003316404 (doi: 10.1201/9781003316404-61)

Liu, X., Lee, C. H. and Grassl, P. (2022) On the modelling of spalling in plain concrete. In: UKACM 2022, Nottingham, UK, 20 - 22 April 2022, (Accepted for Publication)

de Campos, P. R. R., Gil, A. J., Lee, C. H. , Giacomini, M. and Bonet, J. (2022) A new Updated Reference Lagrangian Smooth Particle Hydrodynamics algorithm for isothermal elasticity and elasto-plasticity. Computer Methods in Applied Mechanics and Engineering, 392, 114680. (doi: 10.1016/j.cma.2022.114680)

2021

Lowa, K. W.Q., Lee, C. H. , Gil, A. J., Haider, J. and Bonet, J. (2021) A parameter-free Total Lagrangian Smooth Particle Hydrodynamics algorithm applied to problems with free surfaces. Computational Particle Mechanics, 8(4), pp. 859-892. (doi: 10.1007/s40571-020-00374-x)

Ghavamian, A., Lee, C. H. , Gil, A. J., Bonet, J., Heuze, T. and Stainier, L. (2021) An entropy-stable Smooth Particle Hydrodynamics algorithm for large strain thermo-elasticity. Computer Methods in Applied Mechanics and Engineering, 379, 113736. (doi: 10.1016/j.cma.2021.113736)

Bonet, J., Lee, C. H. , Gil, A. J. and Ghavamian, A. (2021) A first order hyperbolic framework for large strain computational solid dynamics. Part III: thermo-elasticity. Computer Methods in Applied Mechanics and Engineering, 373, 113505. (doi: 10.1016/j.cma.2020.113505)

2019

Hassan, O. I., Ghavamian, A., Lee, C. H. , Gil, A. J., Bonet, J. and Auricchio, F. (2019) An upwind vertex centred finite volume algorithm for nearly and truly incompressible explicit fast solid dynamic applications: Total and Updated Lagrangian formulations. Journal of Computational Physics: X, 3, 100025. (doi: 10.1016/j.jcpx.2019.100025)

Garcia-Blanco, E., Ortigosa, R., Gil, A. J., Lee, C. H. and Bonet, J. (2019) A new computational framework for electro-activation in cardiac mechanics. Computer Methods in Applied Mechanics and Engineering, 348, pp. 796-845. (doi: 10.1016/j.cma.2019.01.042)

Lee, C. H. , Gil, A. J., Ghavamian, A. and Bonet, J. (2019) A Total Lagrangian upwind Smooth Particle Hydrodynamics algorithm for large strain explicit solid dynamics. Computer Methods in Applied Mechanics and Engineering, 344, pp. 209-250. (doi: 10.1016/j.cma.2018.09.033)

2018

Haider, J., Lee, C. H. , Gil, A. J., Huerta, A. and Bonet, J. (2018) An upwind cell centred Total Lagrangian finite volume algorithm for nearly incompressible explicit fast solid dynamic applications. Computer Methods in Applied Mechanics and Engineering, 340, pp. 684-727. (doi: 10.1016/j.cma.2018.06.010)

2017

Lee, C. H. , Gil, A. J., Hassan, O. I., Bonet, J. and Kulasegaram, S. (2017) A variationally consistent Streamline Upwind Petrov–Galerkin Smooth Particle Hydrodynamics algorithm for large strain solid dynamics. Computer Methods in Applied Mechanics and Engineering, 318, pp. 514-536. (doi: 10.1016/j.cma.2017.02.002)

Haider, J., Lee, C. H. , Gil, A. J. and Bonet, J. (2017) A first-order hyperbolic framework for large strain computational solid dynamics: an upwind cell centred Total Lagrangian scheme. International Journal for Numerical Methods in Engineering, 109(3), pp. 407-456. (doi: 10.1002/nme.5293)

2016

Lee, C. H. , Gil, A. J., Greto, G., Kulasegaram, S. and Bonet, J. (2016) A new Jameson–Schmidt–Turkel Smooth Particle Hydrodynamics algorithm for large strain explicit fast dynamics. Computer Methods in Applied Mechanics and Engineering, 311, pp. 71-111. (doi: 10.1016/j.cma.2016.07.033)

Ortigosa, R., Gil, A. J. and Lee, C. H. (2016) A computational framework for large strain nearly and truly incompressible electromechanics based on convex multi-variable strain energies. Computer Methods in Applied Mechanics and Engineering, 310, pp. 297-334. (doi: 10.1016/j.cma.2016.06.025)

Gil, A. J., Lee, C. H. , Bonet, J. and Ortigosa, R. (2016) A first order hyperbolic framework for large strain computational solid dynamics. Part II: total Lagrangian compressible, nearly incompressible and truly incompressible elasticity. Computer Methods in Applied Mechanics and Engineering, 300, pp. 146-181. (doi: 10.1016/j.cma.2015.11.010)

2015

Aguirre, M., Gil, A. J., Bonet, J. and Lee, C. H. (2015) An upwind vertex centred finite volume solver for Lagrangian solid dynamics. Journal of Computational Physics, 300, pp. 387-422. (doi: 10.1016/j.jcp.2015.07.029)

Bonet, J., Gil, A. J., Lee, C. H. , Aguirre, M. and Ortigosa, R. (2015) A first order hyperbolic framework for large strain computational solid dynamics. Part I: total Lagrangian isothermal elasticity. Computer Methods in Applied Mechanics and Engineering, 283, pp. 689-732. (doi: 10.1016/j.cma.2014.09.024)

2014

Gil, A. J., Lee, C. H. , Bonet, J. and Aguirre, M. (2014) A stabilised Petrov–Galerkin formulation for linear tetrahedral elements in compressible, nearly incompressible and truly incompressible fast dynamics. Computer Methods in Applied Mechanics and Engineering, 276, pp. 659-690. (doi: 10.1016/j.cma.2014.04.006)

Karim, I. A., Lee, C. H. , Gil, A. J. and Bonet, J. (2014) A two-step Taylor-Galerkin formulation for fast dynamics. Engineering Computations, 31(3), pp. 366-387. (doi: 10.1108/EC-12-2012-0319)

Lee, C. H. , Gil, A. J. and Bonet, J. (2014) Development of a stabilised Petrov–Galerkin formulation for conservation laws in Lagrangian fast solid dynamics. Computer Methods in Applied Mechanics and Engineering, 268, pp. 40-64. (doi: 10.1016/j.cma.2013.09.004)

2013

Lee, C. H. , Gil, A. J. and Bonet, J. (2013) Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics. Computers and Structures, 118, pp. 13-38. (doi: 10.1016/j.compstruc.2012.12.008)

This list was generated on Thu Apr 18 23:56:23 2024 BST.
Number of items: 25.

Articles

Di Giusto, T. B.J., Lee, C. H. , Gil, A.J., Bonet, J. and Giacomini, M. (2024) A first-order hyperbolic arbitrary Lagrangian Eulerian conservation formulation for non-linear solid dynamics. International Journal for Numerical Methods in Engineering, (Accepted for Publication)

Khayyer, A., Shimizu, Y., Lee, C. H. , Gil, A., Gotoh, H. and Bonet, J. (2023) An improved updated Lagrangian SPH method for structural modelling. Computational Particle Mechanics, (doi: 10.1007/s40571-023-00673-z) (Early Online Publication)

Lee, C. H. , Refachinho de Campos, P. R., Gil, A. J., Giacomini, M. and Bonet, J. (2023) An entropy-stable updated reference Lagrangian smoothed particle hydrodynamics algorithm for thermo-elasticity and thermo-visco-plasticity. Computational Particle Mechanics, 10, pp. 1493-1531. (doi: 10.1007/s40571-023-00564-3)

Runcie, C. J., Lee, C. H. , Haider, J., Gil, A. J. and Bonet, J. (2022) An acoustic Riemann solver for large strain computational contact dynamics. International Journal for Numerical Methods in Engineering, 123(23), pp. 5700-5748. (doi: 10.1002/nme.7085)

de Campos, P. R. R., Gil, A. J., Lee, C. H. , Giacomini, M. and Bonet, J. (2022) A new Updated Reference Lagrangian Smooth Particle Hydrodynamics algorithm for isothermal elasticity and elasto-plasticity. Computer Methods in Applied Mechanics and Engineering, 392, 114680. (doi: 10.1016/j.cma.2022.114680)

Lowa, K. W.Q., Lee, C. H. , Gil, A. J., Haider, J. and Bonet, J. (2021) A parameter-free Total Lagrangian Smooth Particle Hydrodynamics algorithm applied to problems with free surfaces. Computational Particle Mechanics, 8(4), pp. 859-892. (doi: 10.1007/s40571-020-00374-x)

Ghavamian, A., Lee, C. H. , Gil, A. J., Bonet, J., Heuze, T. and Stainier, L. (2021) An entropy-stable Smooth Particle Hydrodynamics algorithm for large strain thermo-elasticity. Computer Methods in Applied Mechanics and Engineering, 379, 113736. (doi: 10.1016/j.cma.2021.113736)

Bonet, J., Lee, C. H. , Gil, A. J. and Ghavamian, A. (2021) A first order hyperbolic framework for large strain computational solid dynamics. Part III: thermo-elasticity. Computer Methods in Applied Mechanics and Engineering, 373, 113505. (doi: 10.1016/j.cma.2020.113505)

Hassan, O. I., Ghavamian, A., Lee, C. H. , Gil, A. J., Bonet, J. and Auricchio, F. (2019) An upwind vertex centred finite volume algorithm for nearly and truly incompressible explicit fast solid dynamic applications: Total and Updated Lagrangian formulations. Journal of Computational Physics: X, 3, 100025. (doi: 10.1016/j.jcpx.2019.100025)

Garcia-Blanco, E., Ortigosa, R., Gil, A. J., Lee, C. H. and Bonet, J. (2019) A new computational framework for electro-activation in cardiac mechanics. Computer Methods in Applied Mechanics and Engineering, 348, pp. 796-845. (doi: 10.1016/j.cma.2019.01.042)

Lee, C. H. , Gil, A. J., Ghavamian, A. and Bonet, J. (2019) A Total Lagrangian upwind Smooth Particle Hydrodynamics algorithm for large strain explicit solid dynamics. Computer Methods in Applied Mechanics and Engineering, 344, pp. 209-250. (doi: 10.1016/j.cma.2018.09.033)

Haider, J., Lee, C. H. , Gil, A. J., Huerta, A. and Bonet, J. (2018) An upwind cell centred Total Lagrangian finite volume algorithm for nearly incompressible explicit fast solid dynamic applications. Computer Methods in Applied Mechanics and Engineering, 340, pp. 684-727. (doi: 10.1016/j.cma.2018.06.010)

Lee, C. H. , Gil, A. J., Hassan, O. I., Bonet, J. and Kulasegaram, S. (2017) A variationally consistent Streamline Upwind Petrov–Galerkin Smooth Particle Hydrodynamics algorithm for large strain solid dynamics. Computer Methods in Applied Mechanics and Engineering, 318, pp. 514-536. (doi: 10.1016/j.cma.2017.02.002)

Haider, J., Lee, C. H. , Gil, A. J. and Bonet, J. (2017) A first-order hyperbolic framework for large strain computational solid dynamics: an upwind cell centred Total Lagrangian scheme. International Journal for Numerical Methods in Engineering, 109(3), pp. 407-456. (doi: 10.1002/nme.5293)

Lee, C. H. , Gil, A. J., Greto, G., Kulasegaram, S. and Bonet, J. (2016) A new Jameson–Schmidt–Turkel Smooth Particle Hydrodynamics algorithm for large strain explicit fast dynamics. Computer Methods in Applied Mechanics and Engineering, 311, pp. 71-111. (doi: 10.1016/j.cma.2016.07.033)

Ortigosa, R., Gil, A. J. and Lee, C. H. (2016) A computational framework for large strain nearly and truly incompressible electromechanics based on convex multi-variable strain energies. Computer Methods in Applied Mechanics and Engineering, 310, pp. 297-334. (doi: 10.1016/j.cma.2016.06.025)

Gil, A. J., Lee, C. H. , Bonet, J. and Ortigosa, R. (2016) A first order hyperbolic framework for large strain computational solid dynamics. Part II: total Lagrangian compressible, nearly incompressible and truly incompressible elasticity. Computer Methods in Applied Mechanics and Engineering, 300, pp. 146-181. (doi: 10.1016/j.cma.2015.11.010)

Aguirre, M., Gil, A. J., Bonet, J. and Lee, C. H. (2015) An upwind vertex centred finite volume solver for Lagrangian solid dynamics. Journal of Computational Physics, 300, pp. 387-422. (doi: 10.1016/j.jcp.2015.07.029)

Bonet, J., Gil, A. J., Lee, C. H. , Aguirre, M. and Ortigosa, R. (2015) A first order hyperbolic framework for large strain computational solid dynamics. Part I: total Lagrangian isothermal elasticity. Computer Methods in Applied Mechanics and Engineering, 283, pp. 689-732. (doi: 10.1016/j.cma.2014.09.024)

Gil, A. J., Lee, C. H. , Bonet, J. and Aguirre, M. (2014) A stabilised Petrov–Galerkin formulation for linear tetrahedral elements in compressible, nearly incompressible and truly incompressible fast dynamics. Computer Methods in Applied Mechanics and Engineering, 276, pp. 659-690. (doi: 10.1016/j.cma.2014.04.006)

Karim, I. A., Lee, C. H. , Gil, A. J. and Bonet, J. (2014) A two-step Taylor-Galerkin formulation for fast dynamics. Engineering Computations, 31(3), pp. 366-387. (doi: 10.1108/EC-12-2012-0319)

Lee, C. H. , Gil, A. J. and Bonet, J. (2014) Development of a stabilised Petrov–Galerkin formulation for conservation laws in Lagrangian fast solid dynamics. Computer Methods in Applied Mechanics and Engineering, 268, pp. 40-64. (doi: 10.1016/j.cma.2013.09.004)

Lee, C. H. , Gil, A. J. and Bonet, J. (2013) Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics. Computers and Structures, 118, pp. 13-38. (doi: 10.1016/j.compstruc.2012.12.008)

Book Sections

Liu, X., Lee, C.H. and Grassl, P. (2022) On the Modelling of the Rate Dependence of Strength Using a Crack-band Based Damage Model for Concrete. In: Meschke, G., Pichler, B. and Rots, J. G. (eds.) Computational Modelling of Concrete and Concrete Structures. CRC Press: London, pp. 520-524. ISBN 9781003316404 (doi: 10.1201/9781003316404-61)

Conference Proceedings

Liu, X., Lee, C. H. and Grassl, P. (2022) On the modelling of spalling in plain concrete. In: UKACM 2022, Nottingham, UK, 20 - 22 April 2022, (Accepted for Publication)

This list was generated on Thu Apr 18 23:56:23 2024 BST.

Grants

  • EPSRC DTP Integrated Placement PhD Scholarship, 2023-2027                                                                Title: SPH for Dynamic fracture. In collaboration with the SPH developer Fifty2 Technology. PI.
  • EPSRC DTP PhD Scholarship, 2019-2022                                                                                                        Title: A first-order conservation law framework for large strain contact dynamics. PI. 
  • H2020 Marie Curie ETN, 2017-2021                                                                                                              Title: Industrial decision-making on complex production technologies supported by simulation-based engineering (ProTechTion). Total budget: €3.83 M. Estimated budget allocated to Swansea University: €546.5 K. Co-I at Swansea University.
  • Sêr Cymru National Research Network Early Career Personal Fellowship award, 2015-2018                    Title: Bridging the gap between computational fluid and solid dynamics: embedding advanced technologies into Welsh industries through massive parallelisation, £150.0 K. PI.

Supervision

Current PhD students

  • A novel Arbitrary Lagrangian Eulerian Formulation written in terms of first-order conservation laws for solid dynamics. 
  • Development of first-order conservation formulation for Dynamic fracture.
  • A Multi-material Arbitrary Lagragian Eulerian formulation for shock hydrodynamics       

 

I am also looking for self-motivated students to work on PhD research in Computational Mechanics. Below is a list of potential PhD topics:

  • Development of a monolithic first-order conservation law framework for Fluid Structure Interaction. Details can be found here.

Completed PhD topics:

  • A first-order conservation law framework for large strain contact dynamics                                          (C. J. Runcie, thesis awarded in 2023)  
  • An Updated Reference Lagrangian SPH algorithm for large strain computational dynamics and its extension to dynamic fracture                                                                                                                     (P. R. R. de Campos, thesis awarded in 2022)
  • A first order hyperbolic framework for thermo-elasticity                                                                          (A. Ghavamian, thesis awarded in 2020)  
  • A vertex centred finite volume algorithm for fast dynamics: Total and Updated Lagrangian descriptions                                                                                                                                              (O. I. Hassan, awarded in 2019)
  • An upwind cell centred finite volume method for large strain explicit solid dynamics in OpenFOAM    (J. Haider, thesis awarded in 2018) 

Teaching

  • Mechanis of Structures 2A
  • Integrated System Design Project 4

Additional information

 

  • MEng project coordinator (ENG5041P) for Civil Engineering Discipline. 2023-Present.
  • Honourary Research Associate, Zienkiewicz Institute for Modelling, Data and AI, Swansea University. 2018-Present.
  • Executive committee member of the UK Association of Computational Mechanics (UKACM). 2020-present.
  • Member of the SPHERIC network representing University of Glasgow. 2021-present.

  •  BEng project coordinator (ENG4110P) for Civil Engineering Discipline. 2022-2023.