Dr Adam Rieger

  • Honorary Senior Research Fellow (Philosophy)

email: Adam.Rieger@glasgow.ac.uk

R403 Level 4, Philosophy, 69 Oakfield Avenue, Glasgow G12 8LP

Import to contacts

ORCID iDhttps://orcid.org/0000-0002-7737-4591

Research interests

Adam Rieger is Senior Lecturer in Philosophy. He read Mathematics as an undergraduate at Cambridge, after which he completed an MSc in Logic and Scientific Method at the London School of Economics, and a DPhil in Philosophy at Oxford, under the supervision of Angus Macintyre and Michael Dummett.

He has research interests in philosophy of mathematics, particularly the foundations of set theory, set theoretic paradoxes and non-wellfounded sets; the semantic paradoxes; conditionals, on which he has written a series of papers defending a neo-Gricean account; formal epistemology; and social choice theory, particularly non-ranked voting methods such as range voting, approval voting and majority judgment.

Publications

List by: Type | Date

Jump to: 2024 | 2018 | 2017 | 2015 | 2013 | 2011 | 2006 | 2002 | 2001 | 2000
Number of items: 14.

2024

Rieger, Adam ORCID logoORCID: https://orcid.org/0000-0002-7737-4591 and Leuenberger, Stephan ORCID logoORCID: https://orcid.org/0000-0002-4993-2816 (Eds.) (2024) Themes from Weir: A Celebration of the Philosophy of Alan Weir. Series: Synthese library, 484. Springer: Cham. ISBN 9783031545566

Leuenberger, Stephan ORCID logoORCID: https://orcid.org/0000-0002-4993-2816 and Rieger, Adam ORCID logoORCID: https://orcid.org/0000-0002-7737-4591 (2024) Introduction: Themes from Alan Weir. In: Rieger, Adam and Leuenberger, Stephan (eds.) Themes from Weir: A Celebration of the Philosophy of Alan Weir. Series: Synthese library, 484. Springer: Cham, i-xiv. ISBN 9783031545566 (doi: 10.1007/978-3-031-54557-3)

2018

Rieger, Adam ORCID logoORCID: https://orcid.org/0000-0002-7737-4591 (2018) The beautiful art of mathematics. Philosophia Mathematica, 26(2), pp. 234-250. (doi: 10.1093/philmat/nkx006)

2017

Rieger, Adam ORCID logoORCID: https://orcid.org/0000-0002-7737-4591 (2017) Was Quine right about subjunctive conditionals? Monist, 100(2), pp. 180-193. (doi: 10.1093/monist/onx003)

2015

Rieger, Adam ORCID logoORCID: https://orcid.org/0000-0002-7737-4591 (2015) Moore's paradox, introspection and doxastic logic. Thought: A Journal of Philosophy, 4(4), pp. 215-227. (doi: 10.1002/tht3.181)

Rieger, Adam ORCID logoORCID: https://orcid.org/0000-0002-7737-4591 (2015) Defending a simple theory of conditionals. American Philosophical Quarterly, 52(3), pp. 253-260.

2013

Rieger, Adam ORCID logoORCID: https://orcid.org/0000-0002-7737-4591 (2013) Conditionals are material: the positive arguments. Synthese, 190(15), pp. 3161-3174. (doi: 10.1007/s11229-012-0134-7)

2011

Chandler, J. and Rieger, A. ORCID logoORCID: https://orcid.org/0000-0002-7737-4591 (2011) Self-respect regained. Proceedings of the Aristotelian Society, 111(2pt2), pp. 311-318. (doi: 10.1111/j.1467-9264.2011.00311.x)

Rieger, A. ORCID logoORCID: https://orcid.org/0000-0002-7737-4591 (2011) Paradox, ZF, and the axiom of foundation. In: Clark, P., Hallett, M. and DeVidi, D. (eds.) Logic, Mathematics, Philosophy, Vintage Enthusiasms: Essays in Honour of John L. Bell. Springer, pp. 171-187. ISBN 9789400702134 (doi: 10.1007/978-94-007-0214-1_9)

Rieger, A. ORCID logoORCID: https://orcid.org/0000-0002-7737-4591 (2011) Voting on voting systems, or the limits of democracy. Analysis, 71(4), pp. 641-642. (doi: 10.1093/analys/anr094)

2006

Rieger, A. (2006) A simple theory of conditionals. Analysis, 66(291), pp. 233-240. (doi: 10.1111/j.1467-8284.2006.00620.x)

2002

Rieger, A. (2002) Paradox without basic law V: a problem with Frege's ontology. Analysis, 62(4), pp. 327-330. (doi: 10.1111/1467-8284.00379)

2001

Rieger, A. (2001) The liar, the strengthened liar, and bivalence. Erkenntnis, 54(2), pp. 195-203. (doi: 10.1023/A:1005600831298)

2000

Rieger, A. ORCID logoORCID: https://orcid.org/0000-0002-7737-4591 (2000) An argument for Finsler-Aczel set theory. Mind, 109(434), pp. 241-253. (doi: 10.1093/mind/109.434.241)

This list was generated on Mon Jun 16 06:20:39 2025 BST.
Number of items: 14.

Articles

Rieger, Adam ORCID logoORCID: https://orcid.org/0000-0002-7737-4591 (2018) The beautiful art of mathematics. Philosophia Mathematica, 26(2), pp. 234-250. (doi: 10.1093/philmat/nkx006)

Rieger, Adam ORCID logoORCID: https://orcid.org/0000-0002-7737-4591 (2017) Was Quine right about subjunctive conditionals? Monist, 100(2), pp. 180-193. (doi: 10.1093/monist/onx003)

Rieger, Adam ORCID logoORCID: https://orcid.org/0000-0002-7737-4591 (2015) Moore's paradox, introspection and doxastic logic. Thought: A Journal of Philosophy, 4(4), pp. 215-227. (doi: 10.1002/tht3.181)

Rieger, Adam ORCID logoORCID: https://orcid.org/0000-0002-7737-4591 (2015) Defending a simple theory of conditionals. American Philosophical Quarterly, 52(3), pp. 253-260.

Rieger, Adam ORCID logoORCID: https://orcid.org/0000-0002-7737-4591 (2013) Conditionals are material: the positive arguments. Synthese, 190(15), pp. 3161-3174. (doi: 10.1007/s11229-012-0134-7)

Chandler, J. and Rieger, A. ORCID logoORCID: https://orcid.org/0000-0002-7737-4591 (2011) Self-respect regained. Proceedings of the Aristotelian Society, 111(2pt2), pp. 311-318. (doi: 10.1111/j.1467-9264.2011.00311.x)

Rieger, A. ORCID logoORCID: https://orcid.org/0000-0002-7737-4591 (2011) Voting on voting systems, or the limits of democracy. Analysis, 71(4), pp. 641-642. (doi: 10.1093/analys/anr094)

Rieger, A. (2006) A simple theory of conditionals. Analysis, 66(291), pp. 233-240. (doi: 10.1111/j.1467-8284.2006.00620.x)

Rieger, A. (2002) Paradox without basic law V: a problem with Frege's ontology. Analysis, 62(4), pp. 327-330. (doi: 10.1111/1467-8284.00379)

Rieger, A. (2001) The liar, the strengthened liar, and bivalence. Erkenntnis, 54(2), pp. 195-203. (doi: 10.1023/A:1005600831298)

Rieger, A. ORCID logoORCID: https://orcid.org/0000-0002-7737-4591 (2000) An argument for Finsler-Aczel set theory. Mind, 109(434), pp. 241-253. (doi: 10.1093/mind/109.434.241)

Book Sections

Leuenberger, Stephan ORCID logoORCID: https://orcid.org/0000-0002-4993-2816 and Rieger, Adam ORCID logoORCID: https://orcid.org/0000-0002-7737-4591 (2024) Introduction: Themes from Alan Weir. In: Rieger, Adam and Leuenberger, Stephan (eds.) Themes from Weir: A Celebration of the Philosophy of Alan Weir. Series: Synthese library, 484. Springer: Cham, i-xiv. ISBN 9783031545566 (doi: 10.1007/978-3-031-54557-3)

Rieger, A. ORCID logoORCID: https://orcid.org/0000-0002-7737-4591 (2011) Paradox, ZF, and the axiom of foundation. In: Clark, P., Hallett, M. and DeVidi, D. (eds.) Logic, Mathematics, Philosophy, Vintage Enthusiasms: Essays in Honour of John L. Bell. Springer, pp. 171-187. ISBN 9789400702134 (doi: 10.1007/978-94-007-0214-1_9)

Edited Books

Rieger, Adam ORCID logoORCID: https://orcid.org/0000-0002-7737-4591 and Leuenberger, Stephan ORCID logoORCID: https://orcid.org/0000-0002-4993-2816 (Eds.) (2024) Themes from Weir: A Celebration of the Philosophy of Alan Weir. Series: Synthese library, 484. Springer: Cham. ISBN 9783031545566

This list was generated on Mon Jun 16 06:20:39 2025 BST.

Supervision

Adam has supervised recent and current students working on dialetheism and plural logic.

He is happy to supervise students in:

  • Philosophy of mathematics
  • Logic
  • Formal epistemology
  • Social choice theory