Postgraduate research 

Molecular Pathology PhD

Start dates for incoming postgraduate research students

1 October 2020 was the preferred date to start your PhD [or the date on your offer letter].

We will run a full on-line induction and training programme that may be taken remotely for the first month. Most of our doctoral researcher training programme will also be available online and we will offer many remote opportunities to help you become part of the Graduate School and wider University community.  

Research that involves laboratory work may start following the completion of induction (all labs are currently up and running).

Some types of research (such as non-laboratory work) and supervision can be carried out entirely remotely and this may be the most appropriate way for you to work at the moment.  Contact your supervisor, if you believe this applies to your research to discuss requirements for home/remote working. You may also require the agreement of the subject, school or institute convener if you wish to carry out your PhD remotely for a fixed period. You may not continue remotely unless an adequate plan is agreed to ensure sufficient work can be undertaken prior to starting the experimental work. It is important that starting remotely does not affect the overall PhD timescale.

Delayed start dates

We understand there may be good reasons to delay:

  • If it is necessary to travel to Glasgow to begin your research, but there are restrictions preventing travel at this time, then a delay to 5 January 2021 is encouraged [when we will run full on-line induction and training programme]. You may also delay to another start time with the agreement of your supervisor and Graduate School.
  • For subjects where laboratory work is required to commence immediately following on-line induction and training and you are unable to come to Glasgow, you should consider delaying your start-date. Contact your supervisor or the Graduate School in this instance.
  • If your research involves objects, artefacts, archives or fieldwork, you should discuss this with your supervisor. Some kinds of work may be able to be started remotely; in other cases, it may be advisable to delay the start-date.
  • External government sponsors may prefer a delay and the University is happy to support this.

From our point of view, there is no disadvantage in deferring your PhD to a later agreed start date. Scholarship holders should check that this can still be provided with a delayed start.

Office and study space

At present, current staff and research students are not using office spaces on campus. We do not have a confirmed date for the return to office use, but all work that can be undertaken off-campus (ie is not lab-based) should be done at home or remotely at present.

Some study spaces are becoming available on campus with a booking system in place, such as the postgraduate study space in the University Library.

International/EU students remotely starting a funded PhD

You should check with your funder that you can be paid a stipend if you are not in the UK. If you are in receipt of a scholarship, you should contact the Graduate School for advice on opening a bank account to allow stipend payments.

body cells


Research in pathology is about understanding of disease mechanism. Our history of research and teaching in pathology extends over 200 years and our current Department of Pathology, opened in Queen Elizabeth University Hospital May 2012, is one of the largest in Europe. With £3.4 million of MRC/EPSRC awards for our campus Glasgow Molecular Pathology Node (2015-2019) , our aim is to bring the Precision Medicine research into diagnostic practice.

Research projects

Self-funded PhD opportunities


Neutrophils and Chemokine Signalling in the Tumour Immune Micro-environment and Progression

Supervisor: Dr Tomoko Iwata

Checkpoint inhibitor immunotherapy is promising, however still requires an improvement in response and development of markers to predict the patients who would benefit from this therapy. 

Neutrophils are abundant blood cell population and known to play anti- or pro-tumour roles depending on the context. Expressed in the neutrophils, a chemokine receptor CXCR2 plays an essential role in their recruitment to inflammatory cites, and its inhibition has been shown to suppress tumorigenesis and metastasis in various cancer types. Furthermore, studies in the pancreatic cancer model have shown that Cxcr2 inhibition resulted in a reduction of pro-tumour neutrophils in tumours, allowing T cells to repopulate, thereby sensitizing them to the checkpoint inhibitor. 

In the bladder, an increased expression of CXCR2 ligands is reported to be associated with tumour progression and poor prognosis, however the roles of tumour infiltrating neutrophils remain largely undefined. In order for neutrophils to be targeted in bladder cancer, it is essential to obtain a better understanding of neutrophil biology in the bladder, in comparisons to other tumour types. 

The project asks the following questions: 

  • What are the roles of tumour-infiltrating neutrophils in tumour progression in the bladder? 
  • What are the characteristics of immune phenotype of neutrophil-enriched tumours, and how do they related to the disease progression? 

We will explore the neutrophil-enriched tumour microenvironment by characterizing the topography of immune cell populations and gene expressions in mouse and human tumour tissues. 


  1. to establish methodologies in multiplex immunohistochemistry (mIHC) followed by the quantitative pathology imaging (QPI) and evaluate the validity of artificial intelligence (AI) / machine learning-based analytical processes in digital pathology platforms 
  2. to characterise the relationships between tumour infiltrating lymphocytes and Cxcr2+ myeloid cells by topographical analysis 
  3. to identify the critical factors leading to the above immune phenotype by gene expression profiling and analysis at the tissue level. 

The overall goal of this study is to understand the roles of neutrophils in bladder cancer progression, and to evaluate the potential of neutrophils or CXCR2 as a new target of immunotherapy. 

Techniques: Through this project, the student is expected to gain a significant expertise in tissue-based research based on hands-on experiences in a variety of cutting-edge histopathology technologies, quantitative digital pathology image analysis, immune and gene profiling, management of tissue resources and large-scale data based on model and clinical specimens. 


  1. Powles, T., Immune Checkpoint Inhibitors for Urologic Cancer: The Tip of the Iceberg? Eur Urol, 2015. 68(2): p. 280-2. 
  2. Coffelt, S.B., M.D. Wellenstein, and K.E. de Visser, Neutrophils in cancer: neutral no more. Nat Rev Cancer, 2016. 16(7): p. 431-46. 
  3. Jamieson, T., et al., Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis. J Clin Invest, 2012. 122(9): p. 3127-44. 
  4. Steele, C.W., et al., CXCR2 Inhibition Profoundly Suppresses Metastases and Augments Immunotherapy in Pancreatic Ductal Adenocarcinoma. Cancer Cell, 2016. 29(6): p. 832-845. 
  5. Foth, M., et al., Fibroblast growth factor receptor 3 activation plays a causative role in urothelial cancer pathogenesis in cooperation with Pten loss in mice. J Pathol, 2014. 233(2): p. 148-58. 
  6. Foth, M., et al., FGFR3 mutation increases bladder tumourigenesis by suppressing acute inflammation. J Pathol, 2018. 246(3): p. 331-343. 
  7. Gartrell, R.D., et al., Quantitative Analysis of Immune Infiltrates in Primary Melanoma. Cancer Immunol Res, 2018. 6(4): p. 481-493. 



Our concept of Molecular Pathology research stems in the tissue-based investigations that provide the important bases for Precision Medicine. Understanding the disease mechanism helps development of new therapies. Therapy stratification could be enhanced by better prediction of therapy response by molecular, and non-invasive, novel biomarkers. The disease area we work on encompasses cancer, inflammation, cardiovascular diseases, and many others. The research projects can address biological questions (basic science) and/or those in alignment with clinical gap of knowledge and diagnostic needs (clinical).

Use of modern technologies by the well-trained, skilled scientists and healthcare practitioners play an important role in delivering Precision Medicine. Our research projects can involve approaches such as:

  • histopathology
  • multiplex immunofluorescence
  • quantitative pathology image analysis
  • immune profiling
  • digital pathology
  • machine learning
  • genetics, such as Next Generation exome and genomic sequencing and expression profiling.

Our research groups are located in the University of Glasgow labs within Laboratory Medicine Building, Queen Elisabeth University Hospital campus. Across our clinical and academic staff interests, the opportunities for Molecular Pathology research is offered to both medical and life science students. Our projects benefit from the close working relationship with Glasgow Tissue Research Facility (GTRF) as well as collaborations with the research institutes and schools in the college of Medical, Veterinary and Life Sciences.

Our PhD programmes offer training in tissue-based research using modern technologies in the forefront of Molecular Pathology. The project could address important biological questions or clinical needs and may involve use of model and/or clinical specimens, as well as images, numerical and clinical data. Supervisors are clinical and/or non-clinical academics in UofG and NHS, in close collaboration with research institutes and schools of UofG, such as Institute of Cancer Sciences, Infection, Immunity and Inflammation, and Cardiovascular and Medical Sciences.

Study options


  • Duration: 3/4 years full-time; 5 years part-time

Individual research projects are tailored around the expertise of principal investigators.

Entry requirements

A 2.1 Honours degree or equivalent.


English language requirements

For applicants whose first language is not English, the University sets a minimum English Language proficiency level.

International English Language Testing System (IELTS) Academic module (not General Training)

  • overall score 6.5
  • no sub-test less than 6.0
  • or equivalent scores in another recognised qualification


Fees and funding



  • UK fee to be confirmed by (2020/21 fee was £4,407)
  • International & EU: £23,000

Prices are based on the annual fee for full-time study. Fees for part-time study are half the full-time fee.

Additional fees for all students:

  • Re-submission by a research student £540
  • Submission for a higher degree by published work £1,355
  • Submission of thesis after deadline lapsed £350
  • Submission by staff in receipt of staff scholarship £790

Depending on the nature of the research project, some students will be expected to pay a bench fee (also known as research support costs) to cover additional costs. The exact amount will be provided in the offer letter.

Alumni discount

We offer a 10% discount to our alumni on all Postgraduate Research and full Postgraduate Taught Masters programmes. This includes University of Glasgow graduates and those who have completed Junior Year Abroad, Exchange programme or International Summer School with us. The discount is applied at registration for students who are not in receipt of another discount or scholarship funded by the University. No additional application is required.


2020/21 fees

  • £4,407 UK/EU
  • £21,920 outside EU

Prices are based on the annual fee for full-time study. Fees for part-time study are half the full-time fee.

Additional fees for all students:

  • Re-submission by a research student £525
  • Submission for a higher degree by published work £1,315
  • Submission of thesis after deadline lapsed £340
  • Submission by staff in receipt of staff scholarship £765

Depending on the nature of the research project, some students will be expected to pay a bench fee (also known as research support costs) to cover additional costs. The exact amount will be provided in the offer letter.

Alumni discount

We offer a 20% discount to our alumni commencing study in Academic session 2020/21, on all Postgraduate Research and full Postgraduate Taught Masters programmes. This includes University of Glasgow graduates and those who have completed a Study Abroad programme or the Erasmus Programme at the University of Glasgow. This discount can be awarded alongside other University scholarships. 

Funding for EU students

The Scottish Government has confirmed that fees for EU students commencing their studies 2020/21 will be at the same level as those for UK student.



The iPhD  is not supported by University of Glasgow Scholarship/Funding


The College of Medical, Veterinary and Life Sciences  provides a vibrant, supportive and stimulating environment for all our postgraduate students. We aim to provide excellent support for our postgraduates through dedicated postgraduate convenors, highly trained supervisors and pastoral support for each student.
Our overarching aim is to provide a research training environment that includes:

  • provision of excellent facilities and cutting edge techniques
  • training in essential research and generic skills
  • excellence in supervision and mentoring
  • interactive discussion groups and seminars
  • an atmosphere that fosters critical cultural policy and research analysis
  • synergy between research groups and areas
  • extensive multidisciplinary and collaborative research
  • extensive external collaborations both within and beyond the UK 
  • a robust generic skills programme including opportunities in social and commercial training

How to apply

Identify potential supervisors

All Postgraduate Research Students are allocated a supervisor who will act as the main source of academic support and research mentoring. You may want to identify a potential supervisor and contact them to discuss your research proposal before you apply. Please note, even if you have spoken to an academic staff member about your proposal you still need to submit an online application form.

You can find relevant academic staff members with our staff research interests search.

Gather your documents

Before applying please make sure you gather the following supporting documentation:

  1. Final or current degree transcripts including grades (and an official translation, if needed) – scanned copy in colour of the original document.
  2. Degree certificates (and an official translation, if needed): scanned copy in colour of the original document.
  3. Two references on headed paper and signed by the referee. One must be academic, the other can be academic or professional. References may be uploaded as part of the application form or you may enter your referees contact details on the application form. We will then email your referee and notify you when we receive the reference.  We can also accept confidential references direct to, from the referee’s university or business email account.
  4. Research proposal, CV, samples of written work as per requirements for each subject area.

Apply now

I've applied. What next?

If you have any other trouble accessing Applicant Self-Service, please see Application Troubleshooting/FAQs. 

Contact us

Before you apply

PhD/MSc/MD: email

iPhD: email

After you have submitted your application

PhD/MSc/MD/iPhD: contact our Admissions team

Any references may be submitted by email to: