UK and Europe join forces for construction of European Solar Telescope

Published: 25 July 2023

Researchers from the School of Physics & Astronomy are lending their support to construction of the largest-ever solar telescope built in Europe, designed to provide unparalleled insight into the phenomena of space weather.

Researchers from the School of Physics & Astronomy are lending their support to construction of the largest-ever solar telescope built in Europe, designed to provide unparalleled insight into the phenomena of space weather.
 
Launched in 2008, the European Solar Telescope (EST) project aims to provide valuable insights into the mechanisms underlying solar flares and coronal mass ejections. These events determine the so-called ‘space weather’, which can lead to geomagnetic storms on earth - seen as the northern lights - and have a strong influence on our technological society.A rendering of the European Space Telescope's design
(Artist's impression of European Space Telescope - credit: IDOM) 

The University of Glasgow is part of the United Kingdom Universities Consortium (UKUC), led by the University of Sheffield, which today signed the deed of the EST’s Canary Foundation in Santa Cruz, Tenerife.
 
The agreement begins together six UK universities – Aberystwyth, Belfast, Durham, Exeter, Glasgow and Sheffield - with a further six European countries to commit to the construction of the telescope at the world-renowned El Roque de los Muchachos Observatory, at La Palma in Spain.
 
Professor Lyndsay Fletcher of the University of Glasgow’s School of Physics & Astronomy was part of the team responsible for defining the telescope science requirements.
 
She said: “The University of Glasgow has a long history of world-leading research in solar physics, and I very much welcome our investment towards bringing this exciting new facility into being.
 
“Our research into solar flares and prominences stands to benefit enormously, since the innovative design of the telescope means that it is optimised for measuring the Sun’s magnetic field, which governs these energetic phenomena. Novel instrumentation, recording the Sun’s structure and dynamics with four times the spatial detail of any existing solar telescope in Europe will lead to a step-change in understanding of energetic events on our nearest star.”
 
Professor Robertus von Fay-Siebenburgen, from the University of Sheffield’s School of Mathematics and Statistics, will be a principal investigator for the UKUC project. He said: “The EST will be the biggest ground-based solar telescope constructed in Europe and will keep its European partners at the forefront of solar physics research, so it's fantastic that so many UK partners have been able to come together to join the EST Canary Foundation today.
 
“This kind of unrivalled research infrastructure will provide Europe astronomers and plasma-astrophysicists with an extraordinary tool for observing the Sun and its space weather, one that will pave the way for scientific advancements in some of the world’s biggest and most important challenges, such as the development of green fusion energy.
 
“By being able to study the physical processes happening in the solar chromosphere in such detail for the first time, we will gain new insight into how the heating mechanisms occur that underpin the plasma heating processes. Learning from how nature does it, will help us explore how to replicate the process for the benefit of humankind.”A picture of the signatories of the UKUC / EST partnership
 
One of the EST’s primary objectives is to improve understanding of the Sun by observing its magnetic fields in unprecedented detail. Once operational, it will be able to uncover signals currently hidden in the noise and reveal the existence of unknown, tiny magnetic structures.
 
The optical configuration and instrumentation of EST have been meticulously designed to study the magnetic and dynamic coupling of the solar atmosphere, and capture the interactions between the different atmospheric layers of the Sun.
 
Additionally, a comprehensive set of instruments will be installed to enable
simultaneous observations across multiple wavelengths. This unique capability will give EST a higher efficiency compared to existing or future telescopes, whether ground-based or space-borne.
 
The preliminary design phase of the telescope, which was funded by the European Commission’s Horizon 2020 programme, has recently been completed. After a construction period of six years, the EST’s first light - or becoming operational - is planned for 2028-2029.
 
The establishment of the EST Foundation today marks a crucial milestone in advancing the project towards the construction phase. One of the primary objectives of the Foundation is to create a European Research Infrastructure Consortium (ERIC), which will bring together the national ministries of the partner countries. The European Solar Telescope ERIC will be the legal entity responsible for overseeing all aspects of the construction and operation of this large research infrastructure.
 


First published: 25 July 2023

<< July