Professor Jen Morton
- Professor (CRUK Scotland Institute)
telephone:
01413302802
email:
Jennifer.Morton@glasgow.ac.uk
Beaston Institute, Cancer Sci & Molecular Pathology, Level 4
Research interests
Research groups
Publications
2024
Walker, M. ORCID: https://orcid.org/0000-0001-5119-9118 and Morton, J. P.
ORCID: https://orcid.org/0000-0001-5766-9141
(2024)
Hydrogel models of pancreatic adenocarcinoma to study cell mechanosensing.
Biophysical Reviews,
(doi: 10.1007/s12551-024-01265-8)
(Early Online Publication)
2023
Whyte, D. et al. (2023) NUAK1 governs centrosome replication in pancreatic cancer via MYPT1/PP1β and GSK3β-dependent regulation of PLK4. Molecular Oncology, 17(7), pp. 1212-1227. (doi: 10.1002/1878-0261.13425) (PMID:36975767) (PMCID:PMC10323901)
Conway, J. R. W. et al. (2023) Monitoring AKT activity and targeting in live tissue and disease contexts using a real-time Akt-FRET biosensor mouse. Science Advances, 9(17), eadf9063. (doi: 10.1126/sciadv.adf9063) (PMID:37126544) (PMCID:PMC10132756)
Barry, Simon T., Gabrilovich, Dmitry I., Sansom, Owen J. ORCID: https://orcid.org/0000-0001-9540-3010, Campbell, Andrew D. and Morton, Jennifer P.
ORCID: https://orcid.org/0000-0001-5766-9141
(2023)
Therapeutic targeting of tumour myeloid cells.
Nature Reviews Cancer, 23(4),
pp. 216-237.
(doi: 10.1038/s41568-022-00546-2)
(PMID:36747021)
Coetzee, A. S. et al. (2023) Nuclear FGFR1 promotes pancreatic stellate cell-driven invasion through up-regulation of Neuregulin 1. Oncogene, 42(7), pp. 419-500. (doi: 10.1038/s41388-022-02513-5) (PMID:36357571) (PMCID:PMC9918430)
2022
Ali, A. et al. (2022) Prognostic implications of microRNA-21 overexpression in pancreatic ductal adenocarcinoma: an international multicenter study of 686 patients. American Journal of Cancer Research, 12(12), pp. 5668-5683. (PMID:36628279) (PMCID:PMC9827095)
Bellomo, G. et al. (2022) Chemotherapy-induced infiltration of neutrophils promotes pancreatic cancer metastasis via Gas6/AXL signalling axis. Gut, 71(11), pp. 2284-2299. (doi: 10.1136/gutjnl-2021-325272) (PMID:35022267) (PMCID:PMC9554050)
Ismail, Nur Faezah Binti, Foth, Mona, Yousef, Amal Rahil Elgaddafi, Cui, Ningxuan, Leach, Joshua D.G., Jamieson, Thomas, Karim, Saadia A., Salmond, Jonathan M., Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141 and Iwata, Tomoko
ORCID: https://orcid.org/0000-0002-9634-9738
(2022)
Loss of Cxcr2 in myeloid cells promotes tumour progression and T cell infiltration in invasive bladder cancer.
Bladder Cancer, 8(3),
pp. 277-290.
(doi: 10.3233/BLC-211645)
Vaziri-Gohar, A. et al. (2022) Limited nutrient availability in the tumor microenvironment renders pancreatic tumors sensitive to allosteric IDH1 inhibitors. Nature Cancer, 3(7), pp. 852-865. (doi: 10.1038/s43018-022-00393-y) (PMID:35681100) (PMCID:PMC9325670)
Kidger, A. M. et al. (2022) Suppression of mutant Kirsten-RAS (KRASG12D)-driven pancreatic carcinogenesis by dual-specificity MAP kinase phosphatases 5 and 6. Oncogene, 41(20), pp. 2811-2823. (doi: 10.1038/s41388-022-02302-0) (PMID:35418690) (PMCID:PMC9106580)
2021
Falcomata, C. et al. (2021) Genetic screens identify a context-specific PI3K/p27Kip1 node driving extrahepatic biliary cancer. Cancer Discovery, 11(12), pp. 3158-3177. (doi: 10.1158/2159-8290.CD-21-0209) (PMID:34282029) (PMCID:PMC7612573)
Murphy, K. J. et al. (2021) Intravital imaging technology guides FAK-mediated priming in pancreatic cancer precision medicine according to Merlin status. Science Advances, 7(40), eabh0363. (doi: 10.1126/sciadv.abh0363) (PMID:34586840) (PMCID:PMC8480933)
Nielsen, S. R. et al. (2021) Suppression of tumor-associated neutrophils by lorlatinib attenuates pancreatic cancer growth and improves treatment with immune checkpoint blockade. Nature Communications, 12, 3414. (doi: 10.1038/s41467-021-23731-7) (PMID:34099731) (PMCID:PMC8184753)
Nacke, M. et al. (2021) An ARF GTPase module promoting invasion and metastasis through regulating phosphoinositide metabolism. Nature Communications, 12, 1623. (doi: 10.1038/s41467-021-21847-4) (PMID:33712589) (PMCID:PMC7955138)
Race, A. M. et al. (2021) Deep learning-based annotation transfer between molecular imaging modalities: an automated workflow for multimodal data integration. Analytical Chemistry, 93(6), pp. 3061-3071. (doi: 10.1021/acs.analchem.0c02726) (PMID:33534548)
Latif, A.-L. et al. (2021) BRD4-mediated repression of p53 is a target for combination therapy in AML. Nature Communications, 12, 241. (doi: 10.1038/s41467-020-20378-8) (PMID:33431824) (PMCID:PMC7801601)
Dreyer, S. B. et al. (2021) Targeting DNA damage response and replication stress in pancreatic cancer. Gastroenterology, 160(1), pp. 362-377. (doi: 10.1053/j.gastro.2020.09.043) (PMID:33039466) (PMCID:PMC8167930)
Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141 and Watt, Dale M.
(2021)
Heterogeneity in the pancreatic cancer microenvironment – TGFβ as a master regulator?
Cancers, 13(19),
4984.
(doi: 10.3390/cancers13194984)
(PMID:34638468)
(PMCID:PMC8508541)
2020
Ahmed, A. A. et al. (2020) Asymmetrically substituted quadruplex-binding naphthalene diimide showing potent activity in pancreatic cancer models. ACS Medicinal Chemistry Letters, 11(8), pp. 1634-1644. (doi: 10.1021/acsmedchemlett.0c00317) (PMID:32832034) (PMCID:PMC7429975)
Muthalagu, N. et al. (2020) Repression of the type I interferon pathway underlies MYC & KRAS-dependent evasion of NK & B cells in pancreatic ductal adenocarcinoma. Cancer Discovery, 10(6), pp. 872-887. (doi: 10.1158/2159-8290.CD-19-0620) (PMID:32200350) (PMCID:PMC7611248)
Brunton, H. et al. (2020) HNF4A and GATA6 loss reveals therapeutically actionable subtypes in pancreatic cancer. Cell Reports, 31(6), 107625. (doi: 10.1016/j.celrep.2020.107625) (PMID:32402285)
Michalopoulou, Evdokia, Auciello, Francesca R., Bulusu, Vinay, Strachan, David, Campbell, Andrew D., Tait-Mulder, Jacqueline, Karim, Saadia A., Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141, Sansom, Owen J.
ORCID: https://orcid.org/0000-0001-9540-3010 and Kamphorst, Jurre J.
ORCID: https://orcid.org/0000-0002-2042-5474
(2020)
Macropinocytosis renders a subset of pancreatic tumor cells resistant to mTOR inhibition.
Cell Reports, 30(8),
2729-2742.e4.
(doi: 10.1016/j.celrep.2020.01.080)
(PMID:32101748)
(PMCID:PMC7043007)
Blagih, J. et al. (2020) Cancer-specific loss of p53 leads to a modulation of myeloid and T cell responses. Cell Reports, 30(2), 481-496.e6. (doi: 10.1016/j.celrep.2019.12.028) (PMID:31940491) (PMCID:31940491)
Dreyer, S.B., Jamieson, N.B. ORCID: https://orcid.org/0000-0002-9552-4725, Morton, J.P.
ORCID: https://orcid.org/0000-0001-5766-9141, Sansom, O.J.
ORCID: https://orcid.org/0000-0001-9540-3010, Biankin, A.V.
ORCID: https://orcid.org/0000-0002-0362-5597 and Chang, D.K.
ORCID: https://orcid.org/0000-0002-4821-3078
(2020)
Pancreatic cancer: from genome discovery to PRECISION-Panc.
Clinical Oncology, 32(1),
pp. 5-8.
(doi: 10.1016/j.clon.2019.08.007)
(PMID:31522943)
2019
Liko, D. et al. (2019) Brf1 loss and not overexpression disrupts tissues homeostasis in the intestine, liver and pancreas. Cell Death and Differentiation, 26(12), pp. 2535-2550. (doi: 10.1038/s41418-019-0316-7) (PMID:30858608) (PMCID:PMC6861133)
Pereira, Brooke A., Vennin, Claire, Papanicolaou, Michael, Chambers, Cecilia R., Herrmann, David, Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141, Cox, Thomas R. and Timpson, Paul
(2019)
CAF subpopulations: a new reservoir of stromal targets in pancreatic cancer.
Trends in Cancer, 5(11),
pp. 724-741.
(doi: 10.1016/j.trecan.2019.09.010)
(PMID:31735290)
Bott, A. J. et al. (2019) Glutamine anabolism plays a critical role in pancreatic cancer by coupling carbon and nitrogen metabolism. Cell Reports, 29(5), 1287-1298.e6. (doi: 10.1016/j.celrep.2019.09.056) (PMID:31665640) (PMCID:PMC6886125)
Vennin, C. et al. (2019) CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan. Nature Communications, 10, 3637. (doi: 10.1038/s41467-019-10968-6) (PMID:31406163) (PMCID:PMC6691013)
Reader, C. S. et al. (2019) The integrin αvβ6 drives pancreatic cancer through diverse mechanisms and represents an effective target for therapy. Journal of Pathology, 249(3), pp. 332-342. (doi: 10.1002/path.5320) (PMID:31259422) (PMCID:PMC6852434)
Hari, P. et al. (2019) The innate immune sensor Toll-like receptor 2 controls the senescence-associated secretory phenotype. Science Advances, 5(6), eaaw0254. (doi: 10.1126/sciadv.aaw0254) (PMID:31183403) (PMCID:PMC6551188)
Halbrook, C. J. et al. (2019) Macrophage-released pyrimidines inhibit gemcitabine therapy in pancreatic cancer. Cell Metabolism, 29(6), 1390-1399.e6. (doi: 10.1016/j.cmet.2019.02.001) (PMID:30827862) (PMCID:PMC6602533)
Leach, Joshua, Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141 and Sansom, Owen J.
ORCID: https://orcid.org/0000-0001-9540-3010
(2019)
Neutrophils: homing in on the myeloid mechanisms of metastasis.
Molecular Immunology, 110,
pp. 69-76.
(doi: 10.1016/j.molimm.2017.12.013)
(PMID:29269005)
(PMCID:PMC6544568)
Auciello, F. R. et al. (2019) A stromal lysolipid-autotaxin signaling axis promotes pancreatic tumor progression. Cancer Discovery, 9(5), pp. 617-627. (doi: 10.1158/2159-8290.CD-18-1212) (PMID:30837243) (PMCID:PMC6497553)
Conway, James R.W., Herrmann, David, Evans, T.R. Jeffry ORCID: https://orcid.org/0000-0002-4175-914X, Morton, Jennifer P.
ORCID: https://orcid.org/0000-0001-5766-9141 and Timpson, Paul
(2019)
Combating pancreatic cancer with PI3K pathway inhibitors in the era of personalised medicine.
Gut, 68(4),
pp. 742-758.
(doi: 10.1136/gutjnl-2018-316822)
(PMID:30396902)
(PMCID:PMC6580874)
Allen-Petersen, B. L. et al. (2019) Activation of PP2A and Inhibition of mTOR synergistically reduce MYC signaling and decrease tumor growth in pancreatic ductal adenocarcinoma. Cancer Research, 79(1), pp. 209-219. (doi: 10.1158/0008-5472.CAN-18-0717) (PMID:30389701) (PMCID:PMC6318036)
2018
Chou, A. et al. (2018) Tailored first-line and second-line CDK4-targeting treatment combinations in mouse models of pancreatic cancer. Gut, 67(12), pp. 2142-2155. (doi: 10.1136/gutjnl-2017-315144) (PMID:29080858) (PMCID:PMC6241608)
Novo, D. et al. (2018) Mutant p53s generate pro-invasive niches by influencing exosome podocalyxin levels. Nature Communications, 9, 5069. (doi: 10.1038/s41467-018-07339-y) (PMID:30498210) (PMCID:PMC6265295)
Mackay, H. L. et al. (2018) Genomic instability in mutant p53 cancer cells upon entotic engulfment. Nature Communications, 9, 3070. (doi: 10.1038/s41467-018-05368-1) (PMID:30076358) (PMCID:PMC6076230)
Warren, S. C. et al. (2018) Removing physiological motion from intravital and clinical functional imaging data. eLife, 7, e35800. (doi: 10.7554/elife.35800) (PMID:29985127) (PMCID:PMC6037484)
Conway, J. R.W. et al. (2018) Intravital imaging to monitor therapeutic response in moving hypoxic regions resistant to PI3K pathway targeting in pancreatic cancer. Cell Reports, 23(11), pp. 3312-3326. (doi: 10.1016/j.celrep.2018.05.038) (PMID:29898401) (PMCID:PMC6019737)
Godfrey, Jack D., Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141, Wilczynska, Ania, Sansom, Owen J.
ORCID: https://orcid.org/0000-0001-9540-3010 and Bushell, Martin D.
(2018)
MiR-142-3p is downregulated in aggressive p53 mutant mouse models of pancreatic ductal adenocarcinoma by hypermethylation of its locus.
Cell Death and Disease, 9(6),
644.
(doi: 10.1038/s41419-018-0628-4)
(PMID:29844410)
(PMCID:PMC5973943)
Candido, J. B. et al. (2018) CSF1R+ macrophages sustain pancreatic tumor growth through T cell suppression and maintenance of key gene programs that define the squamous subtype. Cell Reports, 23(5), pp. 1448-1460. (doi: 10.1016/j.celrep.2018.03.131) (PMID:29719257) (PMCID:PMC5946718)
Meiser, J. et al. (2018) Increased formate overflow is a hallmark of oxidative cancer. Nature Communications, 9, 1368. (doi: 10.1038/s41467-018-03777-w) (PMID:29636461) (PMCID:PMC5893600)
Marchetti, C. et al. (2018) Targeting multiple effector pathways in pancreatic ductal adenocarcinoma with a G-quadruplex-binding small molecule. Journal of Medicinal Chemistry, 61(6), pp. 2500-2517. (doi: 10.1021/acs.jmedchem.7b01781) (PMID:29356532) (PMCID:PMC5867665)
Vennin, Claire, Murphy, Kendelle J., Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141, Cox, Thomas R., Pajic, Marina and Timpson, Paul
(2018)
Reshaping the tumor stroma for treatment of pancreatic cancer.
Gastroenterology, 154(4),
pp. 820-838.
(doi: 10.1053/j.gastro.2017.11.280)
(PMID:29287624)
Schofield, H. K. et al. (2018) Mutant p53R270H drives altered metabolism and increased invasion in pancreatic ductal adenocarcinoma. JCI Insight, 3(2), e97422. (doi: 10.1172/jci.insight.97422) (PMID:29367463) (PMCID:PMC5821189)
2017
Conway, J. R.W. et al. (2017) Three-dimensional organotypic matrices from alternative collagen sources as pre-clinical models for cell biology. Scientific Reports, 7, 16887. (doi: 10.1038/s41598-017-17177-5) (PMID:29203823) (PMCID:PMC5715059)
Farrell, A. S. et al. (2017) MYC regulates ductal-neuroendocrine lineage plasticity in pancreatic ductal adenocarcinoma associated with poor outcome and chemoresistance. Nature Communications, 8, 1728. (doi: 10.1038/s41467-017-01967-6) (PMID:29170413) (PMCID:PMC5701042)
Nobis, M. et al. (2017) A RhoA-FRET biosensor mouse for intravital imaging in normal tissue homeostasis and disease contexts. Cell Reports, 21, pp. 274-288. (doi: 10.1016/j.celrep.2017.09.022) (PMID:28978480)
Chuvin, N. et al. (2017) Acinar-to-ductal metaplasia induced by transforming growth factor beta facilitates KRAS(G12D)-driven pancreatic tumorigenesis. Cellular and Molecular Gastroenterology and Hepatology, 4(2), pp. 263-282. (doi: 10.1016/j.jcmgh.2017.05.005) (PMID:28752115) (PMCID:PMC5524227)
Harris, N.L.E. et al. (2017) SerpinB2 regulates stromal remodelling and local invasion in pancreatic cancer. Oncogene, 36(30), pp. 4288-4298. (doi: 10.1038/onc.2017.63) (PMID:28346421) (PMCID:PMC5537606)
Rice, A.J., Cortes, E., Lachowski, D., Cheung, B.C.H., Karim, S.A., Morton, J.P. ORCID: https://orcid.org/0000-0001-5766-9141 and Del Rio Hernandez, A.
(2017)
Matrix stiffness induces epithelial-mesenchymal transition and promotes chemoresistance in pancreatic cancer cells.
Oncogenesis, 6(7),
e352.
(doi: 10.1038/oncsis.2017.54)
(PMID:28671675)
(PMCID:PMC5541706)
Rosenfeldt, Mathias T., O'Prey, Jim, Flossbach, Lucia, Nixon, Colin, Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141, Sansom, Owen J.
ORCID: https://orcid.org/0000-0001-9540-3010 and Ryan, Kevin M.
ORCID: https://orcid.org/0000-0002-1059-9681
(2017)
PTEN deficiency permits the formation of pancreatic cancer in the absence of autophagy.
Cell Death and Differentiation, 24(7),
pp. 1303-1304.
(doi: 10.1038/cdd.2016.120)
(PMID:28106883)
Lachowski, Dariusz, Cortes, Ernesto, Pink, Daniel, Chronopoulos, Antonios, Karim, Saadia A., Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141 and del Río Hernández, Armando E.
(2017)
Substrate rigidity controls activation and durotaxis in pancreatic stellate cells.
Scientific Reports, 7,
2506.
(doi: 10.1038/s41598-017-02689-x)
(PMID:28566691)
(PMCID:PMC5451433)
Vennin, C. et al. (2017) Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Science Translational Medicine, 9(384), eaai8504. (doi: 10.1126/scitranslmed.aai8504) (PMID:28381539) (PMCID:PMC5777504)
Gundry, C. et al. (2017) Phosphorylation of Rab-coupling protein by LMTK3 controls Rab14-dependent EphA2 trafficking to promote cell:cell repulsion. Nature Communications, 8, 14646. (doi: 10.1038/ncomms14646) (PMID:28294115) (PMCID:PMC5355957)
Rath, N. et al. (2017) ROCK signaling promotes collagen remodeling to facilitate invasive pancreatic ductal adenocarcinoma tumor cell growth. EMBO Molecular Medicine, 9(2), pp. 198-218. (doi: 10.15252/emmm.201606743) (PMID:28031255) (PMCID:PMC5286371)
Humphris, J. L. et al. (2017) Hypermutation in pancreatic cancer. Gastroenterology, 152(1), 68-74.e2. (doi: 10.1053/j.gastro.2016.09.060) (PMID:27856273)
Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141 and Sansom, Owen J.
ORCID: https://orcid.org/0000-0001-9540-3010
(2017)
CXCR2 inhibition in pancreatic cancer: opportunities for immunotherapy?
Immunotherapy, 9(1),
pp. 9-12.
(doi: 10.2217/imt-2016-0115)
(PMID:28000523)
Ritschka, Birgit, Storer, Mekayla, Mas, Alba, Heinzmann, Florian, Ortells, Mari Carmen, Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141, Sansom, Owen J.
ORCID: https://orcid.org/0000-0001-9540-3010, Zender, Lars and Keyes, William M.
(2017)
The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration.
Genes and Development, 31(2),
pp. 172-183.
(doi: 10.1101/gad.290635.116)
(PMID:28143833)
2016
Driscoll, D. R. et al. (2016) mTORC2 signaling drives the development and progression of pancreatic cancer. Cancer Research, 76(23), pp. 6911-6923. (doi: 10.1158/0008-5472.CAN-16-0810) (PMID:27758884) (PMCID:PMC5135633)
Guest, R. V. et al. (2016) Notch3 drives development and progression of cholangiocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 113(43), pp. 12250-12255. (doi: 10.1073/pnas.1600067113) (PMID:27791012) (PMCID:PMC5086988)
Lesina, M. et al. (2016) RelA regulates CXCL1/CXCR2-dependent oncogene-induced senescence in murine Kras-driven pancreatic carcinogenesis. Journal of Clinical Investigation, 126(8), pp. 2919-2932. (doi: 10.1172/jci86477) (PMID:27454298)
Steele, C. W. et al. (2016) CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell, 29(6), pp. 832-845. (doi: 10.1016/j.ccell.2016.04.014) (PMID:27265504) (PMCID:PMC4912354)
Bailey, P. et al. (2016) Genomic analyses identify molecular subtypes of pancreatic cancer. Nature, 531(7592), pp. 47-52. (doi: 10.1038/nature16965) (PMID:26909576)
Matzke-Ogi, A. et al. (2016) Inhibition of tumor growth and metastasis in pancreatic cancer models by interference with CD44v6 signaling. Gastroenterology, 150(2), 513-525.e10. (doi: 10.1053/j.gastro.2015.10.020) (PMID:26597578)
Erami Rud Majani, Z. et al. (2016) Intravital FRAP imaging using an E-cadherin-GFP mouse reveals disease- and drug-dependent dynamic regulation of cell-cell junctions in live tissue. Cell Reports, 14(1), pp. 152-167. (doi: 10.1016/j.celrep.2015.12.020) (PMID:26725115)
2015
Gopinathan, Aarthi, Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141, Jodrell, Duncan I. and Sansom, Owen J.
ORCID: https://orcid.org/0000-0001-9540-3010
(2015)
GEMMs as preclinical models for testing pancreatic cancer therapies.
Disease Models and Mechanisms, 8(10),
pp. 1185-1200.
(doi: 10.1242/dmm.021055)
(PMID:26438692)
(PMCID:PMC4610236)
Steele, C. et al. (2015) CXCR2 inhibition suppresses acute and chronic pancreatic inflammation. Journal of Pathology, 237(1), pp. 85-97. (doi: 10.1002/path.4555) (PMID:25950520)
Dikovskaya, D. et al. (2015) Mitotic stress is an integral part of the oncogene-induced senescence program that promotes multinucleation and cell cycle arrest. Cell Reports, 12(9), pp. 1483-1496. (doi: 10.1016/j.celrep.2015.07.055) (PMID:26299965) (PMCID:PMC4562906)
Miller, B. W. et al. (2015) Targeting the LOX/hypoxia axis reverses many of the features that make pancreatic cancer deadly: inhibition of LOX abrogates metastasis and enhances drug efficacy. EMBO Molecular Medicine, 7, pp. 1063-1076. (doi: 10.15252/emmm.201404827) (PMID:26077591) (PMCID:PMC4551344)
2014
Morran, D. C. et al. (2014) Targeting mTOR dependency in pancreatic cancer. Gut, 63(9), pp. 1481-1489. (doi: 10.1136/gutjnl-2013-306202) (PMID:24717934) (PMCID:PMC4145424)
Walz, S. et al. (2014) Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature, 511(7510), pp. 483-487. (doi: 10.1038/nature13473) (PMID:25043018) (PMCID:PMC6879323)
Hamilton, G. et al. (2014) AKT regulates NPM dependent ARF localization and p53mut stability in tumors. Oncotarget, 5(15), pp. 6142-6167. (doi: 10.18632/oncotarget.2178) (PMID:25071014) (PMCID:PMC4171619)
Li, A. et al. (2014) Fascin is regulated by slug, promotes progression of pancreatic cancer in mice, and is associated with patient outcomes. Gastroenterology, 146(5), 1386-1396.e17. (doi: 10.1053/j.gastro.2014.01.046) (PMID:24462734) (PMCID:PMC4000441)
Johnsson, A.-K. E. et al. (2014) The Rac-FRET mouse reveals tight spatiotemporal control of Rac activity in primary cells and tissues. Cell Reports, 6(6), pp. 1153-1164. (doi: 10.1016/j.celrep.2014.02.024)
Arjonen, A. et al. (2014) Mutant p53–associated myosin-X upregulation promotes breast cancer invasion and metastasis. Journal of Clinical Investigation, 124(3), pp. 1069-1082. (doi: 10.1172/JCI67280) (PMID:24487586) (PMCID:PMC3934176)
Ali, A. et al. (2014) Expression of KOC, S100P, mesothelin and MUC1 in pancreatico-biliary adenocarcinomas: development and utility of a potential diagnostic immunohistochemistry panel. BMC Clinical Pathology, 14, p. 35. (doi: 10.1186/1472-6890-14-35)
Herrmann, D., Conway, J.R.W., Vennin, C., Magenau, A., Hughes, W.E., Morton, J.P. and Timpson, P. (2014) Three-dimensional cancer models mimic cell-matrix interactions in the tumour microenvironment. Carcinogenesis, 35(8), pp. 1671-1679. (doi: 10.1093/carcin/bgu108)
Muthalagu, Nathiya, Junttila, Melissa R., Wiese, Katrin E., Wolf, Elmar, Morton, Jennifer ORCID: https://orcid.org/0000-0001-5766-9141, Bauer, Barbara, Evan, Gerard I., Eilers, Martin and Murphy, Daniel J.
ORCID: https://orcid.org/0000-0002-5538-5468
(2014)
BIM is the primary mediator of MYC-induced apoptosis in multiple solid tissues.
Cell Reports, 8(5),
pp. 1347-1353.
(doi: 10.1016/j.celrep.2014.07.057)
Nobis, Max, McGhee, Ewan J., Herrmann, David, Magenau, Astrid, Morton, Jennifer P., Anderson, Kurt I. and Timpson, Paul (2014) Monitoring the dynamics of Src activity in response to anti-invasive dasatinib treatment at a subcellular level using dual intravital imaging. Cell Adhesion and Migration, 8(5), pp. 478-486. (doi: 10.4161/19336918.2014.970004)
Tan, E.H., Morton, J.P. ORCID: https://orcid.org/0000-0001-5766-9141, Timpson, Paul, Tucci, P., Melino, G., Flores, E.R., Sansom, O.J.
ORCID: https://orcid.org/0000-0001-9540-3010, Vousden, K.H. and Muller, P.A.J.
(2014)
Functions of TAp63 and p53 in restraining the development of metastatic cancer.
Oncogene, 33,
pp. 3325-3333.
(doi: 10.1038/onc.2013.287)
(PMID:23873029)
(PMCID:PMC4181588)
2013
Nobis, M., Carragher, N.O., McGhee, E.J., Morton, J.P. ORCID: https://orcid.org/0000-0001-5766-9141, Sansom, O.J.
ORCID: https://orcid.org/0000-0001-9540-3010, Anderson, K.I. and Timpson, P.
(2013)
Advanced intravital subcellular imaging reveals vital three-dimensional signalling events driving cancer cell behaviour and drug responses in live tissue.
FEBS Journal, 280(21),
pp. 5177-5197.
(doi: 10.1111/febs.12348)
Denley, S.M., Jamieson, N.B. ORCID: https://orcid.org/0000-0002-9552-4725, McCall, P., Oien, K.C.S.
ORCID: https://orcid.org/0000-0002-5237-275X, Morton, J.P.
ORCID: https://orcid.org/0000-0001-5766-9141, Carter, C.R., Edwards, J.
ORCID: https://orcid.org/0000-0002-7192-6906 and McKay, C.J.
(2013)
Activation of the IL-6R/Jak/Stat pathway is associated with a poor outcome in resected pancreatic ductal adenocarcinoma.
Journal of Gastrointestinal Surgery, 17(5),
pp. 887-898.
(doi: 10.1007/s11605-013-2168-7)
Morton, J. ORCID: https://orcid.org/0000-0001-5766-9141 and Sansom, O.J.
ORCID: https://orcid.org/0000-0001-9540-3010
(2013)
MYC-y mice: From tumour initiation to therapeutic targeting of endogenous MYC.
Molecular Oncology, 7(2),
pp. 248-258.
(doi: 10.1016/j.molonc.2013.02.015)
Steele, C.W., Jamieson, N.B. ORCID: https://orcid.org/0000-0002-9552-4725, Evans, T.R.J.
ORCID: https://orcid.org/0000-0002-4175-914X, McKay, C.J., Sansom, O.J.
ORCID: https://orcid.org/0000-0001-9540-3010, Morton, J.
ORCID: https://orcid.org/0000-0001-5766-9141 and Carter, C.R.
(2013)
Exploiting inflammation for therapeutic gain in pancreatic cancer.
British Journal of Cancer, 108(5),
pp. 997-1003.
(doi: 10.1038/bjc.2013.24)
Muller, P.A.J. et al. (2013) Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion. Oncogene, 32(10), pp. 1252-1265. (doi: 10.1038/onc.2012.148)
Acosta, J.C. et al. (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nature Cell Biology, 15, pp. 978-990. (doi: 10.1038/ncb2784)
Karim, S.A., Creedon, H., Patel, H., Carragher, N.O., Morton, J.P. ORCID: https://orcid.org/0000-0001-5766-9141, Muller, W.J., Evans, T.R.J.
ORCID: https://orcid.org/0000-0002-4175-914X, Gusterson, B., Sansom, O.J.
ORCID: https://orcid.org/0000-0001-9540-3010 and Brunton, V.G.
(2013)
Dasatinib inhibits mammary tumour development in a genetically engineered mouse model.
Journal of Pathology, 230(4),
pp. 430-440.
(doi: 10.1002/path.4202)
Nobis, M. et al. (2013) Intravital FLIM-FRET imaging reveals dasatinib-induced spatial control of Src in pancreatic cancer. Cancer Research, 73(15), pp. 4674-4686. (doi: 10.1158/0008-5472.CAN-12-4545)
Rosenfeldt, M.T. et al. (2013) p53 status determines the role of autophagy in pancreatic tumour development. Nature, 504(7479), pp. 296-300. (doi: 10.1038/nature12865)
2012
Blyth, K. ORCID: https://orcid.org/0000-0002-9304-439X, Morton, J.P.
ORCID: https://orcid.org/0000-0001-5766-9141 and Sansom, O.J.
ORCID: https://orcid.org/0000-0001-9540-3010
(2012)
The right time, the right place: will targeting human cancer-associated mutations to the mouse provide the perfect preclinical model?
Current Opinion in Genetics and Development, 22(1),
pp. 28-35.
(doi: 10.1016/j.gde.2012.02.009)
Dozynkiewicz, M.A. et al. (2012) Rab25 and CLIC3 collaborate to promote integrin recycling from late endosomes/lysosomes and drive cancer progression. Developmental Cell, 22(1), pp. 131-145. (doi: 10.1016/j.devcel.2011.11.008)
Jamieson, Nigel B. ORCID: https://orcid.org/0000-0002-9552-4725, Morran, Douglas C., Morton, Jennifer P., Ali, Asif, Dickson, Euan J., Carter, C. Ross, Sansom, Owen J.
ORCID: https://orcid.org/0000-0001-9540-3010, Evans, T. R. Jeffry
ORCID: https://orcid.org/0000-0002-4175-914X, McKay, Colin J. and Oien, Karin A.
ORCID: https://orcid.org/0000-0002-5237-275X
(2012)
MicroRNA molecular profiles associated with diagnosis, clinicopathologic criteria, and overall survival in patients with resectable pancreatic ductal adenocarcinoma.
Clinical Cancer Research, 18(2),
pp. 534-545.
(doi: 10.1158/1078-0432.CCR-11-0679)
Sandilands, E. et al. (2012) Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling. Nature Cell Biology, 14(1), pp. 51-60. (doi: 10.1038/ncb2386)
2011
Kennedy, A.l. et al. (2011) Activation of the PIK3CA/AKT Pathway Suppresses Senescence Induced by an Activated RAS Oncogene to Promote Tumorigenesis. Molecular Cell, 42(1), pp. 36-49. (doi: 10.1016/j.molcel.2011.02.020)
Ahmad, I. et al. (2011) β-Catenin activation synergizes with PTEN loss to cause bladder cancer formation. Oncogene, 30(2), pp. 178-189. (doi: 10.1038/onc.2010.399)
Kennedy, Alyssa L., Adams, Peter D. and Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141
(2011)
Ras, PI3K/Akt and senescence: paradoxes provide clues for pancreatic cancer therapy.
Small GTPases, 2(5),
pp. 264-267.
(doi: 10.4161/sgtp.2.5.17367)
(PMID:22292129)
(PMCID:PMC3265817)
Lindsay, C.C.R. et al. (2011) P-Rex1 is required for efficient melanoblast migration and melanoma metastasis. Nature Communications, 2, pp. 1-9. (doi: 10.1038/ncomms1560)
McGhee, Ewan J., Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141, Von Kriegsheim, Alex, Schwarz, Juliane P., Karim, Saadia A., Carragher, Neil O., Sansom, Owen
ORCID: https://orcid.org/0000-0001-9540-3010, Anderson, Kurt I. and Timpson, Paul
(2011)
FLIM-FRET imaging in vivo reveals 3D-environment spatially regulates RhoGTPase activity during cancer cell invasion.
Small GTPases, 2(4),
pp. 239-244.
(doi: 10.4161/sgtp.2.4.17275)
(PMID:22145098)
(PMCID:PMC3225915)
Morton, J.P., Myant, K.B. and Sansom, O.J. ORCID: https://orcid.org/0000-0001-9540-3010
(2011)
A FAK-PI-3K-mTOR axis is required for Wnt-Myc driven intestinal regeneration and tumorigenesis.
Cell Cycle, 10(2),
pp. 173-175.
(doi: 10.4161/cc.10.2.14350)
Morton, J.P. ORCID: https://orcid.org/0000-0001-5766-9141, Steele, C.W. and Sansom, O.J.
ORCID: https://orcid.org/0000-0001-9540-3010
(2011)
Timing Is Everything: Brca2 and p53 Mutations in Pancreatic Cancer.
Gastroenterology, 140(4),
pp. 1143-1146.
(doi: 10.1053/j.gastro.2011.02.026)
Timpson, P. et al. (2011) Spatial Regulation of RhoA Activity during Pancreatic Cancer Cell Invasion Driven by Mutant p53. Cancer Research, 71(3), pp. 747-757. (doi: 10.1158/0008-5472.CAN-10-2267)
2010
Doyle, Brendan, Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141, Delaney, David W., Ridgway, Rachel A., Wilkins, Julie A. and Sansom, Owen J.
ORCID: https://orcid.org/0000-0001-9540-3010
(2010)
p53 mutation and loss have different effects on tumourigenesis in a novel mouse model of pleomorphic rhabdomyosarcoma.
Journal of Pathology, 222(2),
pp. 129-137.
(doi: 10.1002/path.2748)
(PMID:20662002)
Morton, J.P. et al. (2010) Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 107(1), pp. 246-251. (doi: 10.1073/pnas.0908428107)
Ashton, G.H. et al. (2010) Focal Adhesion Kinase Is Required for Intestinal Regeneration and Tumorigenesis Downstream of Wnt/c-Myc Signaling. Developmental Cell, 19(2), pp. 259-269. (doi: 10.1016/j.devcel.2010.07.015)
Morton, J. et al. (2010) LKB1 haploinsufficiency cooperates with Kras to promote pancreatic cancer through suppression of p21-dependent growth arrest. Gastroenterology, 139(2), 586-597.e6. (doi: 10.1053/j.gastro.2010.04.055)
Morton, J.P. et al. (2010) Dasatinib Inhibits the Development of Metastases in a Mouse Model of Pancreatic Ductal Adenocarcinoma. Gastroenterology, 139(1), pp. 292-303. (doi: 10.1053/j.gastro.2010.03.034)
2009
Wellner, U. et al. (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nature Cell Biology, 11(12), 1487-U236. (doi: 10.1038/ncb1998) (PMID:19935649)
2008
Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141, Klimstra, David S., Mongeau, Michelle E. and Lewis, Brian C.
(2008)
Trp53 deletion stimulates the formation of metastatic pancreatic tumors.
American Journal of Pathology, 172(4),
pp. 1081-1087.
(doi: 10.2353/ajpath.2008.070778)
(PMID:18310506)
(PMCID:PMC2276406)
2007
Morton, J.P. ORCID: https://orcid.org/0000-0001-5766-9141, Kantidakis, T. and White, R.J.
(2007)
RNA polymerase III transcription is repressed in response to the tumour suppressor ARF.
Nucleic Acids Research, 35(9),
pp. 3046-3052.
(doi: 10.1093/nar/gkm208)
Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141, Mongeau, Michelle E., Klimstra, David S., Morris, John P., Lee, Yie Chia, Kawaguchi, Yoshiya, Wright, Christopher V.E., Hebrok, Matthias and Lewis, Brian C.
(2007)
Sonic hedgehog acts at multiple stages during pancreatic tumorigenesis.
Proceedings of the National Academy of Sciences of the United States of America, 104(12),
pp. 5103-5108.
(doi: 10.1073/pnas.0701158104)
(PMID:17372229)
(PMCID:PMC1828712)
Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141 and Lewis, Brian C.
(2007)
Shh signaling and pancreatic cancer: implications for therapy?
Cell Cycle, 6(13),
pp. 1553-1557.
(doi: 10.4161/cc.6.13.4467)
(PMID:17611415)
2005
Daly, N.L., Arvanitis, D.A., Fairley, J.A., Gomez-Roman, N. ORCID: https://orcid.org/0000-0002-2325-7517, Morton, J.P.
ORCID: https://orcid.org/0000-0001-5766-9141, Graham, S.V., Spandidos, D.A. and White, R.J.
(2005)
Deregulation of RNA polymerase III transcription in cervical epithelium in response to high-risk human papillomavirus.
Oncogene, 24,
pp. 880-888.
(doi: 10.1038/sj.onc.1208031)
2003
Crighton, Diane, Woiwode, Annette, Zhang, Cheng, Mandavia, Nihar, Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141, Warnock, Lorna J., Milner, Jo, White, Robert J. and Johnson, Deborah L.
(2003)
p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB.
EMBO Journal, 22(11),
pp. 2810-2820.
(doi: 10.1093/emboj/cdg265)
(PMID:12773395)
(PMCID:PMC156762)
2002
Johnston, I.M., Allison, S.J., Morton, J.P. ORCID: https://orcid.org/0000-0001-5766-9141, Schramm, L., Scott, P.H. and White, R.J.
(2002)
CK2 forms a stable complex with TFIII3 and activates RNA polymerase III transcription in human cells.
Molecular and Cellular Biology, 22,
pp. 3757-3768.
(doi: 10.1128/MCB.22.11.3757-3768.2002)
2000
Cameron, E.R. ORCID: https://orcid.org/0000-0001-8311-1491, Morton, J.
ORCID: https://orcid.org/0000-0001-5766-9141, Johnston, C.J., Irvine, J., Bell, M, Onions, D.E., Neil, J.C.
ORCID: https://orcid.org/0000-0003-4447-8279, Campbell, M. and Blyth, K.
ORCID: https://orcid.org/0000-0002-9304-439X
(2000)
Fas-independent apoptosis in T-cell tumours induced by the CD2-myc transgene.
Cell Death and Differentiation, 7(1),
pp. 80-88.
(doi: 10.1038/sj.cdd.4400630)
(PMID:10713723)
Articles
Walker, M. ORCID: https://orcid.org/0000-0001-5119-9118 and Morton, J. P.
ORCID: https://orcid.org/0000-0001-5766-9141
(2024)
Hydrogel models of pancreatic adenocarcinoma to study cell mechanosensing.
Biophysical Reviews,
(doi: 10.1007/s12551-024-01265-8)
(Early Online Publication)
Whyte, D. et al. (2023) NUAK1 governs centrosome replication in pancreatic cancer via MYPT1/PP1β and GSK3β-dependent regulation of PLK4. Molecular Oncology, 17(7), pp. 1212-1227. (doi: 10.1002/1878-0261.13425) (PMID:36975767) (PMCID:PMC10323901)
Conway, J. R. W. et al. (2023) Monitoring AKT activity and targeting in live tissue and disease contexts using a real-time Akt-FRET biosensor mouse. Science Advances, 9(17), eadf9063. (doi: 10.1126/sciadv.adf9063) (PMID:37126544) (PMCID:PMC10132756)
Barry, Simon T., Gabrilovich, Dmitry I., Sansom, Owen J. ORCID: https://orcid.org/0000-0001-9540-3010, Campbell, Andrew D. and Morton, Jennifer P.
ORCID: https://orcid.org/0000-0001-5766-9141
(2023)
Therapeutic targeting of tumour myeloid cells.
Nature Reviews Cancer, 23(4),
pp. 216-237.
(doi: 10.1038/s41568-022-00546-2)
(PMID:36747021)
Coetzee, A. S. et al. (2023) Nuclear FGFR1 promotes pancreatic stellate cell-driven invasion through up-regulation of Neuregulin 1. Oncogene, 42(7), pp. 419-500. (doi: 10.1038/s41388-022-02513-5) (PMID:36357571) (PMCID:PMC9918430)
Ali, A. et al. (2022) Prognostic implications of microRNA-21 overexpression in pancreatic ductal adenocarcinoma: an international multicenter study of 686 patients. American Journal of Cancer Research, 12(12), pp. 5668-5683. (PMID:36628279) (PMCID:PMC9827095)
Bellomo, G. et al. (2022) Chemotherapy-induced infiltration of neutrophils promotes pancreatic cancer metastasis via Gas6/AXL signalling axis. Gut, 71(11), pp. 2284-2299. (doi: 10.1136/gutjnl-2021-325272) (PMID:35022267) (PMCID:PMC9554050)
Ismail, Nur Faezah Binti, Foth, Mona, Yousef, Amal Rahil Elgaddafi, Cui, Ningxuan, Leach, Joshua D.G., Jamieson, Thomas, Karim, Saadia A., Salmond, Jonathan M., Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141 and Iwata, Tomoko
ORCID: https://orcid.org/0000-0002-9634-9738
(2022)
Loss of Cxcr2 in myeloid cells promotes tumour progression and T cell infiltration in invasive bladder cancer.
Bladder Cancer, 8(3),
pp. 277-290.
(doi: 10.3233/BLC-211645)
Vaziri-Gohar, A. et al. (2022) Limited nutrient availability in the tumor microenvironment renders pancreatic tumors sensitive to allosteric IDH1 inhibitors. Nature Cancer, 3(7), pp. 852-865. (doi: 10.1038/s43018-022-00393-y) (PMID:35681100) (PMCID:PMC9325670)
Kidger, A. M. et al. (2022) Suppression of mutant Kirsten-RAS (KRASG12D)-driven pancreatic carcinogenesis by dual-specificity MAP kinase phosphatases 5 and 6. Oncogene, 41(20), pp. 2811-2823. (doi: 10.1038/s41388-022-02302-0) (PMID:35418690) (PMCID:PMC9106580)
Falcomata, C. et al. (2021) Genetic screens identify a context-specific PI3K/p27Kip1 node driving extrahepatic biliary cancer. Cancer Discovery, 11(12), pp. 3158-3177. (doi: 10.1158/2159-8290.CD-21-0209) (PMID:34282029) (PMCID:PMC7612573)
Murphy, K. J. et al. (2021) Intravital imaging technology guides FAK-mediated priming in pancreatic cancer precision medicine according to Merlin status. Science Advances, 7(40), eabh0363. (doi: 10.1126/sciadv.abh0363) (PMID:34586840) (PMCID:PMC8480933)
Nielsen, S. R. et al. (2021) Suppression of tumor-associated neutrophils by lorlatinib attenuates pancreatic cancer growth and improves treatment with immune checkpoint blockade. Nature Communications, 12, 3414. (doi: 10.1038/s41467-021-23731-7) (PMID:34099731) (PMCID:PMC8184753)
Nacke, M. et al. (2021) An ARF GTPase module promoting invasion and metastasis through regulating phosphoinositide metabolism. Nature Communications, 12, 1623. (doi: 10.1038/s41467-021-21847-4) (PMID:33712589) (PMCID:PMC7955138)
Race, A. M. et al. (2021) Deep learning-based annotation transfer between molecular imaging modalities: an automated workflow for multimodal data integration. Analytical Chemistry, 93(6), pp. 3061-3071. (doi: 10.1021/acs.analchem.0c02726) (PMID:33534548)
Latif, A.-L. et al. (2021) BRD4-mediated repression of p53 is a target for combination therapy in AML. Nature Communications, 12, 241. (doi: 10.1038/s41467-020-20378-8) (PMID:33431824) (PMCID:PMC7801601)
Dreyer, S. B. et al. (2021) Targeting DNA damage response and replication stress in pancreatic cancer. Gastroenterology, 160(1), pp. 362-377. (doi: 10.1053/j.gastro.2020.09.043) (PMID:33039466) (PMCID:PMC8167930)
Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141 and Watt, Dale M.
(2021)
Heterogeneity in the pancreatic cancer microenvironment – TGFβ as a master regulator?
Cancers, 13(19),
4984.
(doi: 10.3390/cancers13194984)
(PMID:34638468)
(PMCID:PMC8508541)
Ahmed, A. A. et al. (2020) Asymmetrically substituted quadruplex-binding naphthalene diimide showing potent activity in pancreatic cancer models. ACS Medicinal Chemistry Letters, 11(8), pp. 1634-1644. (doi: 10.1021/acsmedchemlett.0c00317) (PMID:32832034) (PMCID:PMC7429975)
Muthalagu, N. et al. (2020) Repression of the type I interferon pathway underlies MYC & KRAS-dependent evasion of NK & B cells in pancreatic ductal adenocarcinoma. Cancer Discovery, 10(6), pp. 872-887. (doi: 10.1158/2159-8290.CD-19-0620) (PMID:32200350) (PMCID:PMC7611248)
Brunton, H. et al. (2020) HNF4A and GATA6 loss reveals therapeutically actionable subtypes in pancreatic cancer. Cell Reports, 31(6), 107625. (doi: 10.1016/j.celrep.2020.107625) (PMID:32402285)
Michalopoulou, Evdokia, Auciello, Francesca R., Bulusu, Vinay, Strachan, David, Campbell, Andrew D., Tait-Mulder, Jacqueline, Karim, Saadia A., Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141, Sansom, Owen J.
ORCID: https://orcid.org/0000-0001-9540-3010 and Kamphorst, Jurre J.
ORCID: https://orcid.org/0000-0002-2042-5474
(2020)
Macropinocytosis renders a subset of pancreatic tumor cells resistant to mTOR inhibition.
Cell Reports, 30(8),
2729-2742.e4.
(doi: 10.1016/j.celrep.2020.01.080)
(PMID:32101748)
(PMCID:PMC7043007)
Blagih, J. et al. (2020) Cancer-specific loss of p53 leads to a modulation of myeloid and T cell responses. Cell Reports, 30(2), 481-496.e6. (doi: 10.1016/j.celrep.2019.12.028) (PMID:31940491) (PMCID:31940491)
Dreyer, S.B., Jamieson, N.B. ORCID: https://orcid.org/0000-0002-9552-4725, Morton, J.P.
ORCID: https://orcid.org/0000-0001-5766-9141, Sansom, O.J.
ORCID: https://orcid.org/0000-0001-9540-3010, Biankin, A.V.
ORCID: https://orcid.org/0000-0002-0362-5597 and Chang, D.K.
ORCID: https://orcid.org/0000-0002-4821-3078
(2020)
Pancreatic cancer: from genome discovery to PRECISION-Panc.
Clinical Oncology, 32(1),
pp. 5-8.
(doi: 10.1016/j.clon.2019.08.007)
(PMID:31522943)
Liko, D. et al. (2019) Brf1 loss and not overexpression disrupts tissues homeostasis in the intestine, liver and pancreas. Cell Death and Differentiation, 26(12), pp. 2535-2550. (doi: 10.1038/s41418-019-0316-7) (PMID:30858608) (PMCID:PMC6861133)
Pereira, Brooke A., Vennin, Claire, Papanicolaou, Michael, Chambers, Cecilia R., Herrmann, David, Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141, Cox, Thomas R. and Timpson, Paul
(2019)
CAF subpopulations: a new reservoir of stromal targets in pancreatic cancer.
Trends in Cancer, 5(11),
pp. 724-741.
(doi: 10.1016/j.trecan.2019.09.010)
(PMID:31735290)
Bott, A. J. et al. (2019) Glutamine anabolism plays a critical role in pancreatic cancer by coupling carbon and nitrogen metabolism. Cell Reports, 29(5), 1287-1298.e6. (doi: 10.1016/j.celrep.2019.09.056) (PMID:31665640) (PMCID:PMC6886125)
Vennin, C. et al. (2019) CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan. Nature Communications, 10, 3637. (doi: 10.1038/s41467-019-10968-6) (PMID:31406163) (PMCID:PMC6691013)
Reader, C. S. et al. (2019) The integrin αvβ6 drives pancreatic cancer through diverse mechanisms and represents an effective target for therapy. Journal of Pathology, 249(3), pp. 332-342. (doi: 10.1002/path.5320) (PMID:31259422) (PMCID:PMC6852434)
Hari, P. et al. (2019) The innate immune sensor Toll-like receptor 2 controls the senescence-associated secretory phenotype. Science Advances, 5(6), eaaw0254. (doi: 10.1126/sciadv.aaw0254) (PMID:31183403) (PMCID:PMC6551188)
Halbrook, C. J. et al. (2019) Macrophage-released pyrimidines inhibit gemcitabine therapy in pancreatic cancer. Cell Metabolism, 29(6), 1390-1399.e6. (doi: 10.1016/j.cmet.2019.02.001) (PMID:30827862) (PMCID:PMC6602533)
Leach, Joshua, Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141 and Sansom, Owen J.
ORCID: https://orcid.org/0000-0001-9540-3010
(2019)
Neutrophils: homing in on the myeloid mechanisms of metastasis.
Molecular Immunology, 110,
pp. 69-76.
(doi: 10.1016/j.molimm.2017.12.013)
(PMID:29269005)
(PMCID:PMC6544568)
Auciello, F. R. et al. (2019) A stromal lysolipid-autotaxin signaling axis promotes pancreatic tumor progression. Cancer Discovery, 9(5), pp. 617-627. (doi: 10.1158/2159-8290.CD-18-1212) (PMID:30837243) (PMCID:PMC6497553)
Conway, James R.W., Herrmann, David, Evans, T.R. Jeffry ORCID: https://orcid.org/0000-0002-4175-914X, Morton, Jennifer P.
ORCID: https://orcid.org/0000-0001-5766-9141 and Timpson, Paul
(2019)
Combating pancreatic cancer with PI3K pathway inhibitors in the era of personalised medicine.
Gut, 68(4),
pp. 742-758.
(doi: 10.1136/gutjnl-2018-316822)
(PMID:30396902)
(PMCID:PMC6580874)
Allen-Petersen, B. L. et al. (2019) Activation of PP2A and Inhibition of mTOR synergistically reduce MYC signaling and decrease tumor growth in pancreatic ductal adenocarcinoma. Cancer Research, 79(1), pp. 209-219. (doi: 10.1158/0008-5472.CAN-18-0717) (PMID:30389701) (PMCID:PMC6318036)
Chou, A. et al. (2018) Tailored first-line and second-line CDK4-targeting treatment combinations in mouse models of pancreatic cancer. Gut, 67(12), pp. 2142-2155. (doi: 10.1136/gutjnl-2017-315144) (PMID:29080858) (PMCID:PMC6241608)
Novo, D. et al. (2018) Mutant p53s generate pro-invasive niches by influencing exosome podocalyxin levels. Nature Communications, 9, 5069. (doi: 10.1038/s41467-018-07339-y) (PMID:30498210) (PMCID:PMC6265295)
Mackay, H. L. et al. (2018) Genomic instability in mutant p53 cancer cells upon entotic engulfment. Nature Communications, 9, 3070. (doi: 10.1038/s41467-018-05368-1) (PMID:30076358) (PMCID:PMC6076230)
Warren, S. C. et al. (2018) Removing physiological motion from intravital and clinical functional imaging data. eLife, 7, e35800. (doi: 10.7554/elife.35800) (PMID:29985127) (PMCID:PMC6037484)
Conway, J. R.W. et al. (2018) Intravital imaging to monitor therapeutic response in moving hypoxic regions resistant to PI3K pathway targeting in pancreatic cancer. Cell Reports, 23(11), pp. 3312-3326. (doi: 10.1016/j.celrep.2018.05.038) (PMID:29898401) (PMCID:PMC6019737)
Godfrey, Jack D., Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141, Wilczynska, Ania, Sansom, Owen J.
ORCID: https://orcid.org/0000-0001-9540-3010 and Bushell, Martin D.
(2018)
MiR-142-3p is downregulated in aggressive p53 mutant mouse models of pancreatic ductal adenocarcinoma by hypermethylation of its locus.
Cell Death and Disease, 9(6),
644.
(doi: 10.1038/s41419-018-0628-4)
(PMID:29844410)
(PMCID:PMC5973943)
Candido, J. B. et al. (2018) CSF1R+ macrophages sustain pancreatic tumor growth through T cell suppression and maintenance of key gene programs that define the squamous subtype. Cell Reports, 23(5), pp. 1448-1460. (doi: 10.1016/j.celrep.2018.03.131) (PMID:29719257) (PMCID:PMC5946718)
Meiser, J. et al. (2018) Increased formate overflow is a hallmark of oxidative cancer. Nature Communications, 9, 1368. (doi: 10.1038/s41467-018-03777-w) (PMID:29636461) (PMCID:PMC5893600)
Marchetti, C. et al. (2018) Targeting multiple effector pathways in pancreatic ductal adenocarcinoma with a G-quadruplex-binding small molecule. Journal of Medicinal Chemistry, 61(6), pp. 2500-2517. (doi: 10.1021/acs.jmedchem.7b01781) (PMID:29356532) (PMCID:PMC5867665)
Vennin, Claire, Murphy, Kendelle J., Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141, Cox, Thomas R., Pajic, Marina and Timpson, Paul
(2018)
Reshaping the tumor stroma for treatment of pancreatic cancer.
Gastroenterology, 154(4),
pp. 820-838.
(doi: 10.1053/j.gastro.2017.11.280)
(PMID:29287624)
Schofield, H. K. et al. (2018) Mutant p53R270H drives altered metabolism and increased invasion in pancreatic ductal adenocarcinoma. JCI Insight, 3(2), e97422. (doi: 10.1172/jci.insight.97422) (PMID:29367463) (PMCID:PMC5821189)
Conway, J. R.W. et al. (2017) Three-dimensional organotypic matrices from alternative collagen sources as pre-clinical models for cell biology. Scientific Reports, 7, 16887. (doi: 10.1038/s41598-017-17177-5) (PMID:29203823) (PMCID:PMC5715059)
Farrell, A. S. et al. (2017) MYC regulates ductal-neuroendocrine lineage plasticity in pancreatic ductal adenocarcinoma associated with poor outcome and chemoresistance. Nature Communications, 8, 1728. (doi: 10.1038/s41467-017-01967-6) (PMID:29170413) (PMCID:PMC5701042)
Nobis, M. et al. (2017) A RhoA-FRET biosensor mouse for intravital imaging in normal tissue homeostasis and disease contexts. Cell Reports, 21, pp. 274-288. (doi: 10.1016/j.celrep.2017.09.022) (PMID:28978480)
Chuvin, N. et al. (2017) Acinar-to-ductal metaplasia induced by transforming growth factor beta facilitates KRAS(G12D)-driven pancreatic tumorigenesis. Cellular and Molecular Gastroenterology and Hepatology, 4(2), pp. 263-282. (doi: 10.1016/j.jcmgh.2017.05.005) (PMID:28752115) (PMCID:PMC5524227)
Harris, N.L.E. et al. (2017) SerpinB2 regulates stromal remodelling and local invasion in pancreatic cancer. Oncogene, 36(30), pp. 4288-4298. (doi: 10.1038/onc.2017.63) (PMID:28346421) (PMCID:PMC5537606)
Rice, A.J., Cortes, E., Lachowski, D., Cheung, B.C.H., Karim, S.A., Morton, J.P. ORCID: https://orcid.org/0000-0001-5766-9141 and Del Rio Hernandez, A.
(2017)
Matrix stiffness induces epithelial-mesenchymal transition and promotes chemoresistance in pancreatic cancer cells.
Oncogenesis, 6(7),
e352.
(doi: 10.1038/oncsis.2017.54)
(PMID:28671675)
(PMCID:PMC5541706)
Rosenfeldt, Mathias T., O'Prey, Jim, Flossbach, Lucia, Nixon, Colin, Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141, Sansom, Owen J.
ORCID: https://orcid.org/0000-0001-9540-3010 and Ryan, Kevin M.
ORCID: https://orcid.org/0000-0002-1059-9681
(2017)
PTEN deficiency permits the formation of pancreatic cancer in the absence of autophagy.
Cell Death and Differentiation, 24(7),
pp. 1303-1304.
(doi: 10.1038/cdd.2016.120)
(PMID:28106883)
Lachowski, Dariusz, Cortes, Ernesto, Pink, Daniel, Chronopoulos, Antonios, Karim, Saadia A., Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141 and del Río Hernández, Armando E.
(2017)
Substrate rigidity controls activation and durotaxis in pancreatic stellate cells.
Scientific Reports, 7,
2506.
(doi: 10.1038/s41598-017-02689-x)
(PMID:28566691)
(PMCID:PMC5451433)
Vennin, C. et al. (2017) Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Science Translational Medicine, 9(384), eaai8504. (doi: 10.1126/scitranslmed.aai8504) (PMID:28381539) (PMCID:PMC5777504)
Gundry, C. et al. (2017) Phosphorylation of Rab-coupling protein by LMTK3 controls Rab14-dependent EphA2 trafficking to promote cell:cell repulsion. Nature Communications, 8, 14646. (doi: 10.1038/ncomms14646) (PMID:28294115) (PMCID:PMC5355957)
Rath, N. et al. (2017) ROCK signaling promotes collagen remodeling to facilitate invasive pancreatic ductal adenocarcinoma tumor cell growth. EMBO Molecular Medicine, 9(2), pp. 198-218. (doi: 10.15252/emmm.201606743) (PMID:28031255) (PMCID:PMC5286371)
Humphris, J. L. et al. (2017) Hypermutation in pancreatic cancer. Gastroenterology, 152(1), 68-74.e2. (doi: 10.1053/j.gastro.2016.09.060) (PMID:27856273)
Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141 and Sansom, Owen J.
ORCID: https://orcid.org/0000-0001-9540-3010
(2017)
CXCR2 inhibition in pancreatic cancer: opportunities for immunotherapy?
Immunotherapy, 9(1),
pp. 9-12.
(doi: 10.2217/imt-2016-0115)
(PMID:28000523)
Ritschka, Birgit, Storer, Mekayla, Mas, Alba, Heinzmann, Florian, Ortells, Mari Carmen, Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141, Sansom, Owen J.
ORCID: https://orcid.org/0000-0001-9540-3010, Zender, Lars and Keyes, William M.
(2017)
The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration.
Genes and Development, 31(2),
pp. 172-183.
(doi: 10.1101/gad.290635.116)
(PMID:28143833)
Driscoll, D. R. et al. (2016) mTORC2 signaling drives the development and progression of pancreatic cancer. Cancer Research, 76(23), pp. 6911-6923. (doi: 10.1158/0008-5472.CAN-16-0810) (PMID:27758884) (PMCID:PMC5135633)
Guest, R. V. et al. (2016) Notch3 drives development and progression of cholangiocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 113(43), pp. 12250-12255. (doi: 10.1073/pnas.1600067113) (PMID:27791012) (PMCID:PMC5086988)
Lesina, M. et al. (2016) RelA regulates CXCL1/CXCR2-dependent oncogene-induced senescence in murine Kras-driven pancreatic carcinogenesis. Journal of Clinical Investigation, 126(8), pp. 2919-2932. (doi: 10.1172/jci86477) (PMID:27454298)
Steele, C. W. et al. (2016) CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell, 29(6), pp. 832-845. (doi: 10.1016/j.ccell.2016.04.014) (PMID:27265504) (PMCID:PMC4912354)
Bailey, P. et al. (2016) Genomic analyses identify molecular subtypes of pancreatic cancer. Nature, 531(7592), pp. 47-52. (doi: 10.1038/nature16965) (PMID:26909576)
Matzke-Ogi, A. et al. (2016) Inhibition of tumor growth and metastasis in pancreatic cancer models by interference with CD44v6 signaling. Gastroenterology, 150(2), 513-525.e10. (doi: 10.1053/j.gastro.2015.10.020) (PMID:26597578)
Erami Rud Majani, Z. et al. (2016) Intravital FRAP imaging using an E-cadherin-GFP mouse reveals disease- and drug-dependent dynamic regulation of cell-cell junctions in live tissue. Cell Reports, 14(1), pp. 152-167. (doi: 10.1016/j.celrep.2015.12.020) (PMID:26725115)
Gopinathan, Aarthi, Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141, Jodrell, Duncan I. and Sansom, Owen J.
ORCID: https://orcid.org/0000-0001-9540-3010
(2015)
GEMMs as preclinical models for testing pancreatic cancer therapies.
Disease Models and Mechanisms, 8(10),
pp. 1185-1200.
(doi: 10.1242/dmm.021055)
(PMID:26438692)
(PMCID:PMC4610236)
Steele, C. et al. (2015) CXCR2 inhibition suppresses acute and chronic pancreatic inflammation. Journal of Pathology, 237(1), pp. 85-97. (doi: 10.1002/path.4555) (PMID:25950520)
Dikovskaya, D. et al. (2015) Mitotic stress is an integral part of the oncogene-induced senescence program that promotes multinucleation and cell cycle arrest. Cell Reports, 12(9), pp. 1483-1496. (doi: 10.1016/j.celrep.2015.07.055) (PMID:26299965) (PMCID:PMC4562906)
Miller, B. W. et al. (2015) Targeting the LOX/hypoxia axis reverses many of the features that make pancreatic cancer deadly: inhibition of LOX abrogates metastasis and enhances drug efficacy. EMBO Molecular Medicine, 7, pp. 1063-1076. (doi: 10.15252/emmm.201404827) (PMID:26077591) (PMCID:PMC4551344)
Morran, D. C. et al. (2014) Targeting mTOR dependency in pancreatic cancer. Gut, 63(9), pp. 1481-1489. (doi: 10.1136/gutjnl-2013-306202) (PMID:24717934) (PMCID:PMC4145424)
Walz, S. et al. (2014) Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature, 511(7510), pp. 483-487. (doi: 10.1038/nature13473) (PMID:25043018) (PMCID:PMC6879323)
Hamilton, G. et al. (2014) AKT regulates NPM dependent ARF localization and p53mut stability in tumors. Oncotarget, 5(15), pp. 6142-6167. (doi: 10.18632/oncotarget.2178) (PMID:25071014) (PMCID:PMC4171619)
Li, A. et al. (2014) Fascin is regulated by slug, promotes progression of pancreatic cancer in mice, and is associated with patient outcomes. Gastroenterology, 146(5), 1386-1396.e17. (doi: 10.1053/j.gastro.2014.01.046) (PMID:24462734) (PMCID:PMC4000441)
Johnsson, A.-K. E. et al. (2014) The Rac-FRET mouse reveals tight spatiotemporal control of Rac activity in primary cells and tissues. Cell Reports, 6(6), pp. 1153-1164. (doi: 10.1016/j.celrep.2014.02.024)
Arjonen, A. et al. (2014) Mutant p53–associated myosin-X upregulation promotes breast cancer invasion and metastasis. Journal of Clinical Investigation, 124(3), pp. 1069-1082. (doi: 10.1172/JCI67280) (PMID:24487586) (PMCID:PMC3934176)
Ali, A. et al. (2014) Expression of KOC, S100P, mesothelin and MUC1 in pancreatico-biliary adenocarcinomas: development and utility of a potential diagnostic immunohistochemistry panel. BMC Clinical Pathology, 14, p. 35. (doi: 10.1186/1472-6890-14-35)
Herrmann, D., Conway, J.R.W., Vennin, C., Magenau, A., Hughes, W.E., Morton, J.P. and Timpson, P. (2014) Three-dimensional cancer models mimic cell-matrix interactions in the tumour microenvironment. Carcinogenesis, 35(8), pp. 1671-1679. (doi: 10.1093/carcin/bgu108)
Muthalagu, Nathiya, Junttila, Melissa R., Wiese, Katrin E., Wolf, Elmar, Morton, Jennifer ORCID: https://orcid.org/0000-0001-5766-9141, Bauer, Barbara, Evan, Gerard I., Eilers, Martin and Murphy, Daniel J.
ORCID: https://orcid.org/0000-0002-5538-5468
(2014)
BIM is the primary mediator of MYC-induced apoptosis in multiple solid tissues.
Cell Reports, 8(5),
pp. 1347-1353.
(doi: 10.1016/j.celrep.2014.07.057)
Nobis, Max, McGhee, Ewan J., Herrmann, David, Magenau, Astrid, Morton, Jennifer P., Anderson, Kurt I. and Timpson, Paul (2014) Monitoring the dynamics of Src activity in response to anti-invasive dasatinib treatment at a subcellular level using dual intravital imaging. Cell Adhesion and Migration, 8(5), pp. 478-486. (doi: 10.4161/19336918.2014.970004)
Tan, E.H., Morton, J.P. ORCID: https://orcid.org/0000-0001-5766-9141, Timpson, Paul, Tucci, P., Melino, G., Flores, E.R., Sansom, O.J.
ORCID: https://orcid.org/0000-0001-9540-3010, Vousden, K.H. and Muller, P.A.J.
(2014)
Functions of TAp63 and p53 in restraining the development of metastatic cancer.
Oncogene, 33,
pp. 3325-3333.
(doi: 10.1038/onc.2013.287)
(PMID:23873029)
(PMCID:PMC4181588)
Nobis, M., Carragher, N.O., McGhee, E.J., Morton, J.P. ORCID: https://orcid.org/0000-0001-5766-9141, Sansom, O.J.
ORCID: https://orcid.org/0000-0001-9540-3010, Anderson, K.I. and Timpson, P.
(2013)
Advanced intravital subcellular imaging reveals vital three-dimensional signalling events driving cancer cell behaviour and drug responses in live tissue.
FEBS Journal, 280(21),
pp. 5177-5197.
(doi: 10.1111/febs.12348)
Denley, S.M., Jamieson, N.B. ORCID: https://orcid.org/0000-0002-9552-4725, McCall, P., Oien, K.C.S.
ORCID: https://orcid.org/0000-0002-5237-275X, Morton, J.P.
ORCID: https://orcid.org/0000-0001-5766-9141, Carter, C.R., Edwards, J.
ORCID: https://orcid.org/0000-0002-7192-6906 and McKay, C.J.
(2013)
Activation of the IL-6R/Jak/Stat pathway is associated with a poor outcome in resected pancreatic ductal adenocarcinoma.
Journal of Gastrointestinal Surgery, 17(5),
pp. 887-898.
(doi: 10.1007/s11605-013-2168-7)
Morton, J. ORCID: https://orcid.org/0000-0001-5766-9141 and Sansom, O.J.
ORCID: https://orcid.org/0000-0001-9540-3010
(2013)
MYC-y mice: From tumour initiation to therapeutic targeting of endogenous MYC.
Molecular Oncology, 7(2),
pp. 248-258.
(doi: 10.1016/j.molonc.2013.02.015)
Steele, C.W., Jamieson, N.B. ORCID: https://orcid.org/0000-0002-9552-4725, Evans, T.R.J.
ORCID: https://orcid.org/0000-0002-4175-914X, McKay, C.J., Sansom, O.J.
ORCID: https://orcid.org/0000-0001-9540-3010, Morton, J.
ORCID: https://orcid.org/0000-0001-5766-9141 and Carter, C.R.
(2013)
Exploiting inflammation for therapeutic gain in pancreatic cancer.
British Journal of Cancer, 108(5),
pp. 997-1003.
(doi: 10.1038/bjc.2013.24)
Muller, P.A.J. et al. (2013) Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion. Oncogene, 32(10), pp. 1252-1265. (doi: 10.1038/onc.2012.148)
Acosta, J.C. et al. (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nature Cell Biology, 15, pp. 978-990. (doi: 10.1038/ncb2784)
Karim, S.A., Creedon, H., Patel, H., Carragher, N.O., Morton, J.P. ORCID: https://orcid.org/0000-0001-5766-9141, Muller, W.J., Evans, T.R.J.
ORCID: https://orcid.org/0000-0002-4175-914X, Gusterson, B., Sansom, O.J.
ORCID: https://orcid.org/0000-0001-9540-3010 and Brunton, V.G.
(2013)
Dasatinib inhibits mammary tumour development in a genetically engineered mouse model.
Journal of Pathology, 230(4),
pp. 430-440.
(doi: 10.1002/path.4202)
Nobis, M. et al. (2013) Intravital FLIM-FRET imaging reveals dasatinib-induced spatial control of Src in pancreatic cancer. Cancer Research, 73(15), pp. 4674-4686. (doi: 10.1158/0008-5472.CAN-12-4545)
Rosenfeldt, M.T. et al. (2013) p53 status determines the role of autophagy in pancreatic tumour development. Nature, 504(7479), pp. 296-300. (doi: 10.1038/nature12865)
Blyth, K. ORCID: https://orcid.org/0000-0002-9304-439X, Morton, J.P.
ORCID: https://orcid.org/0000-0001-5766-9141 and Sansom, O.J.
ORCID: https://orcid.org/0000-0001-9540-3010
(2012)
The right time, the right place: will targeting human cancer-associated mutations to the mouse provide the perfect preclinical model?
Current Opinion in Genetics and Development, 22(1),
pp. 28-35.
(doi: 10.1016/j.gde.2012.02.009)
Dozynkiewicz, M.A. et al. (2012) Rab25 and CLIC3 collaborate to promote integrin recycling from late endosomes/lysosomes and drive cancer progression. Developmental Cell, 22(1), pp. 131-145. (doi: 10.1016/j.devcel.2011.11.008)
Jamieson, Nigel B. ORCID: https://orcid.org/0000-0002-9552-4725, Morran, Douglas C., Morton, Jennifer P., Ali, Asif, Dickson, Euan J., Carter, C. Ross, Sansom, Owen J.
ORCID: https://orcid.org/0000-0001-9540-3010, Evans, T. R. Jeffry
ORCID: https://orcid.org/0000-0002-4175-914X, McKay, Colin J. and Oien, Karin A.
ORCID: https://orcid.org/0000-0002-5237-275X
(2012)
MicroRNA molecular profiles associated with diagnosis, clinicopathologic criteria, and overall survival in patients with resectable pancreatic ductal adenocarcinoma.
Clinical Cancer Research, 18(2),
pp. 534-545.
(doi: 10.1158/1078-0432.CCR-11-0679)
Sandilands, E. et al. (2012) Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling. Nature Cell Biology, 14(1), pp. 51-60. (doi: 10.1038/ncb2386)
Kennedy, A.l. et al. (2011) Activation of the PIK3CA/AKT Pathway Suppresses Senescence Induced by an Activated RAS Oncogene to Promote Tumorigenesis. Molecular Cell, 42(1), pp. 36-49. (doi: 10.1016/j.molcel.2011.02.020)
Ahmad, I. et al. (2011) β-Catenin activation synergizes with PTEN loss to cause bladder cancer formation. Oncogene, 30(2), pp. 178-189. (doi: 10.1038/onc.2010.399)
Kennedy, Alyssa L., Adams, Peter D. and Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141
(2011)
Ras, PI3K/Akt and senescence: paradoxes provide clues for pancreatic cancer therapy.
Small GTPases, 2(5),
pp. 264-267.
(doi: 10.4161/sgtp.2.5.17367)
(PMID:22292129)
(PMCID:PMC3265817)
Lindsay, C.C.R. et al. (2011) P-Rex1 is required for efficient melanoblast migration and melanoma metastasis. Nature Communications, 2, pp. 1-9. (doi: 10.1038/ncomms1560)
McGhee, Ewan J., Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141, Von Kriegsheim, Alex, Schwarz, Juliane P., Karim, Saadia A., Carragher, Neil O., Sansom, Owen
ORCID: https://orcid.org/0000-0001-9540-3010, Anderson, Kurt I. and Timpson, Paul
(2011)
FLIM-FRET imaging in vivo reveals 3D-environment spatially regulates RhoGTPase activity during cancer cell invasion.
Small GTPases, 2(4),
pp. 239-244.
(doi: 10.4161/sgtp.2.4.17275)
(PMID:22145098)
(PMCID:PMC3225915)
Morton, J.P., Myant, K.B. and Sansom, O.J. ORCID: https://orcid.org/0000-0001-9540-3010
(2011)
A FAK-PI-3K-mTOR axis is required for Wnt-Myc driven intestinal regeneration and tumorigenesis.
Cell Cycle, 10(2),
pp. 173-175.
(doi: 10.4161/cc.10.2.14350)
Morton, J.P. ORCID: https://orcid.org/0000-0001-5766-9141, Steele, C.W. and Sansom, O.J.
ORCID: https://orcid.org/0000-0001-9540-3010
(2011)
Timing Is Everything: Brca2 and p53 Mutations in Pancreatic Cancer.
Gastroenterology, 140(4),
pp. 1143-1146.
(doi: 10.1053/j.gastro.2011.02.026)
Timpson, P. et al. (2011) Spatial Regulation of RhoA Activity during Pancreatic Cancer Cell Invasion Driven by Mutant p53. Cancer Research, 71(3), pp. 747-757. (doi: 10.1158/0008-5472.CAN-10-2267)
Doyle, Brendan, Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141, Delaney, David W., Ridgway, Rachel A., Wilkins, Julie A. and Sansom, Owen J.
ORCID: https://orcid.org/0000-0001-9540-3010
(2010)
p53 mutation and loss have different effects on tumourigenesis in a novel mouse model of pleomorphic rhabdomyosarcoma.
Journal of Pathology, 222(2),
pp. 129-137.
(doi: 10.1002/path.2748)
(PMID:20662002)
Morton, J.P. et al. (2010) Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 107(1), pp. 246-251. (doi: 10.1073/pnas.0908428107)
Ashton, G.H. et al. (2010) Focal Adhesion Kinase Is Required for Intestinal Regeneration and Tumorigenesis Downstream of Wnt/c-Myc Signaling. Developmental Cell, 19(2), pp. 259-269. (doi: 10.1016/j.devcel.2010.07.015)
Morton, J. et al. (2010) LKB1 haploinsufficiency cooperates with Kras to promote pancreatic cancer through suppression of p21-dependent growth arrest. Gastroenterology, 139(2), 586-597.e6. (doi: 10.1053/j.gastro.2010.04.055)
Morton, J.P. et al. (2010) Dasatinib Inhibits the Development of Metastases in a Mouse Model of Pancreatic Ductal Adenocarcinoma. Gastroenterology, 139(1), pp. 292-303. (doi: 10.1053/j.gastro.2010.03.034)
Wellner, U. et al. (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nature Cell Biology, 11(12), 1487-U236. (doi: 10.1038/ncb1998) (PMID:19935649)
Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141, Klimstra, David S., Mongeau, Michelle E. and Lewis, Brian C.
(2008)
Trp53 deletion stimulates the formation of metastatic pancreatic tumors.
American Journal of Pathology, 172(4),
pp. 1081-1087.
(doi: 10.2353/ajpath.2008.070778)
(PMID:18310506)
(PMCID:PMC2276406)
Morton, J.P. ORCID: https://orcid.org/0000-0001-5766-9141, Kantidakis, T. and White, R.J.
(2007)
RNA polymerase III transcription is repressed in response to the tumour suppressor ARF.
Nucleic Acids Research, 35(9),
pp. 3046-3052.
(doi: 10.1093/nar/gkm208)
Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141, Mongeau, Michelle E., Klimstra, David S., Morris, John P., Lee, Yie Chia, Kawaguchi, Yoshiya, Wright, Christopher V.E., Hebrok, Matthias and Lewis, Brian C.
(2007)
Sonic hedgehog acts at multiple stages during pancreatic tumorigenesis.
Proceedings of the National Academy of Sciences of the United States of America, 104(12),
pp. 5103-5108.
(doi: 10.1073/pnas.0701158104)
(PMID:17372229)
(PMCID:PMC1828712)
Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141 and Lewis, Brian C.
(2007)
Shh signaling and pancreatic cancer: implications for therapy?
Cell Cycle, 6(13),
pp. 1553-1557.
(doi: 10.4161/cc.6.13.4467)
(PMID:17611415)
Daly, N.L., Arvanitis, D.A., Fairley, J.A., Gomez-Roman, N. ORCID: https://orcid.org/0000-0002-2325-7517, Morton, J.P.
ORCID: https://orcid.org/0000-0001-5766-9141, Graham, S.V., Spandidos, D.A. and White, R.J.
(2005)
Deregulation of RNA polymerase III transcription in cervical epithelium in response to high-risk human papillomavirus.
Oncogene, 24,
pp. 880-888.
(doi: 10.1038/sj.onc.1208031)
Crighton, Diane, Woiwode, Annette, Zhang, Cheng, Mandavia, Nihar, Morton, Jennifer P. ORCID: https://orcid.org/0000-0001-5766-9141, Warnock, Lorna J., Milner, Jo, White, Robert J. and Johnson, Deborah L.
(2003)
p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB.
EMBO Journal, 22(11),
pp. 2810-2820.
(doi: 10.1093/emboj/cdg265)
(PMID:12773395)
(PMCID:PMC156762)
Johnston, I.M., Allison, S.J., Morton, J.P. ORCID: https://orcid.org/0000-0001-5766-9141, Schramm, L., Scott, P.H. and White, R.J.
(2002)
CK2 forms a stable complex with TFIII3 and activates RNA polymerase III transcription in human cells.
Molecular and Cellular Biology, 22,
pp. 3757-3768.
(doi: 10.1128/MCB.22.11.3757-3768.2002)
Cameron, E.R. ORCID: https://orcid.org/0000-0001-8311-1491, Morton, J.
ORCID: https://orcid.org/0000-0001-5766-9141, Johnston, C.J., Irvine, J., Bell, M, Onions, D.E., Neil, J.C.
ORCID: https://orcid.org/0000-0003-4447-8279, Campbell, M. and Blyth, K.
ORCID: https://orcid.org/0000-0002-9304-439X
(2000)
Fas-independent apoptosis in T-cell tumours induced by the CD2-myc transgene.
Cell Death and Differentiation, 7(1),
pp. 80-88.
(doi: 10.1038/sj.cdd.4400630)
(PMID:10713723)
Grants
Grants and Awards listed are those received whilst working with the University of Glasgow.
- Multi-scale multi-modal characterisation of pre-malignant pancreatic lesions to define targets for early intervention
Pancreatic Cancer UK
2024 - 2027
- UKRI Engineering Biology
UK Research and Innovation
2024 - 2029
- Identifying therapeutic opportunities for Bilary Cancers by investigating the role of Monocytes in drug response
AMMF - The Cholangiocarcinoma Charity
2024 - 2025
- Investigating Complex Crosstalk in the Pancreatic Cancer Microenvironment
Medical Research Council
2023 - 2028
- Investigating the pro-tumor functions of gamma delta T cells in hepatocellular carcinoma.
Worldwide Cancer Research
2022 - 2025
- Using complex state of the art mouse models of cancer to improve the understanding and treatment of human cancer
Medical Research Council
2022 - 2027
- CRUK Centre Renewal 2021
Cancer Research UK
2022 - 2023
- Investigating BH3 mimetics as radiosensitising agents in glioblastoma and pancreatic ductal adenocarcinoma
Cancer Research UK
2022 - 2022