Dr Kirstyn Brunker

  • Research Fellow (Infectious Disease Ecology)
  • Affiliate (School of Infection & Immunity)

email: Kirstyn.Brunker@glasgow.ac.uk

RI Biodiversity Animal Health and Comparative Medicine

Import to contacts

ORCID iDhttps://orcid.org/0000-0001-9990-6299

Research interests

I am interested in the application of genomics within One Health-based systems to improve animal and human pathogen surveillance and management. In particular, my research vision is to use genomics approaches to improve the detection, control and prevention of long-standing endemic diseases that impose significant health and financial burdens on communities in Low and Middle Income Countries (LMICs).

You can follow my latest research developments on Twitter: @kirstynbrunker

Genomic surveillance of rabies virus

Genomic surveillance has rapidly emerged as a powerful tool for infectious disease surveillance, providing unprecedented insights into pathogen evolution and transmission, and guiding control and prevention strategies. My research involves developing methods to generate and analyse molecular sequence data from samples collected from suspect rabid animals.‌

RNA extractions in car boot using lab-in-a-suitcase

Rabies is a fatal viral zoonosis widespread throughout Asia and Africa, disproportionately affecting rural and impoverished populations. Mass vaccination of domestic dogs has eliminated rabies in high-income countries and research demonstrates that elimination of dog-mediated rabies in LMICs is also feasible. A global campaign is underway to eliminate dog-mediated rabies, for which effective surveillance is essential, with genomic surveillance likely to have particular utility during the endgame.

Lab-in-a-suitcase

Well-resourced laboratory facilities are‌‌‌‌ often distant from animal-human interfaces where there is a high risk‌ of disease transmission. As a consequence delays in detection, diagnosis and control of pathogens are common. I am leading the development of a field-based genomics surveillance platform for rabies virus based on a lab-in-a-suitcase approach to overcome limitations in resource-poor settings where diseases such as rabies are a major public health concern. This work involves providing training opportunities to build local genomics capacity in LMICS, including MinION sequencing training workshops held in Kenya, Philippines and Peru in 2019.                                                                       ‌

My aim is to develop affordable tools and protocols to support rabies surveillance and control programmes in LMICs that can serve as a blueprint for tackling emerging and neglected viral diseases more broadly.

Training in MinION sequencing

Other interests

 

Publications

List by: Type | Date

Jump to: 2024 | 2023 | 2022 | 2021 | 2020 | 2018 | 2017 | 2015 | 2012 | 2010
Number of items: 24.

2024

Durrant, R. et al. (2024) Examining the molecular clock hypothesis for the contemporary evolution of the rabies virus. PLoS Pathogens, 20(11), e1012740. (doi: 10.1371/journal.ppat.1012740) (PMID:39585914) (Early Online Publication)

Li, Y.-T., Ko, H.-Y., Hughes, J. , Liu, M.-T., Lin, Y.-L., Hampson, K. and Brunker, K. (2024) From emergence to endemicity: highly pathogenic H5 avian influenza viruses in Taiwan. Nature Communications, (doi: 10.1038/s41467-024-53816-y) (Early Online Publication)

Jaswant, G. et al. (2024) Molecular characterisation of human rabies in Tanzania and Kenya: a case series report and phylogenetic investigation. Infectious Diseases of Poverty, 13, 79. (doi: 10.1186/s40249-024-01245-w)

Sajib, M. S. I. , Brunker, K. , Oravcova, K. , Everest, P. , Murphy, M. E. and Forde, T. (2024) Advances in host depletion and pathogen enrichment methods for rapid sequencing-based diagnosis of bloodstream infection. Journal of Molecular Diagnostics, 26(9), pp. 741-753. (doi: 10.1016/j.jmoldx.2024.05.008) (PMID:38925458)

Brunker, K. (2024) Rapid pathogen surveillance: field-ready sequencing solutions. Nature Reviews Genetics, 25(8), 532. (doi: 10.1038/s41576-024-00734-w) (PMID:38684856)

2023

Bautista, C., Jaswant, G., French, H., Campbell, K., Durrant, R. , Gifford, R. , Kia, G. S.N., Ogoti, B., Hampson, K. and Brunker, K. (2023) Whole genome sequencing for rapid characterization of rabies virus using nanopore technology. Journal of Visualized Experiments(191), e65414. (doi: 10.3791/65414) (PMID:37677046)

Lushasi, K. et al. (2023) Integrating contact tracing and whole-genome sequencing to track the elimination of dog-mediated rabies: an observational and genomic study. eLife, 12, e85262. (doi: 10.7554/elife.85262) (PMID:37227428) (PMCID:PMC10299823)

2022

Campbell, K., Gifford, R. J. , Singer, J., Hill, V., O'Toole, A., Rambaut, A., Hampson, K. and Brunker, K. (2022) Making genomic surveillance deliver: a lineage classification and nomenclature system to inform rabies elimination. PLoS Pathogens, 18(5), e1010023. (doi: 10.1371/journal.ppat.1010023) (PMID:35500026) (PMCID:PMC9162366)

Mancy, R. et al. (2022) Rabies shows how scale of transmission can enable acute infections to persist at low prevalence. Science, 376(6592), pp. 512-516. (doi: 10.1126/science.abn0713) (PMID:35482879) (PMCID:PMC7613728)

Li, Y.-T. et al. (2022) Lineage BA.2 dominated the Omicron SARS-CoV-2 epidemic wave in the Philippines. Virus Evolution, 8(2), veac078. (doi: 10.1093/ve/veac078) (PMID:36090771) (PMCID:PMC9452094)

2021

Li, K. K. et al. (2021) Genetic epidemiology of SARS-CoV-2 transmission in renal dialysis units - a high risk community-hospital interface. Journal of Infection, 83(1), pp. 96-103. (doi: 10.1016/j.jinf.2021.04.020) (PMID:33895226) (PMCID:PMC8061788)

Rihn, S. J. et al. (2021) A plasmid DNA-launched SARS-CoV-2 reverse genetics system and coronavirus toolkit for COVID-19 research. PLoS Biology, 19(2), e3001091. (doi: 10.1371/journal.pbio.3001091) (PMID:33630831) (PMCID:PMC7906417)

Da Silva Filipe, A. et al. (2021) Genomic epidemiology reveals multiple introductions of SARS-CoV-2 from mainland Europe into Scotland. Nature Microbiology, 6(1), pp. 112-122. (doi: 10.1038/s41564-020-00838-z) (PMID:33349681)

Faust, C. L. et al. (2021) Harnessing technology and portability to conduct molecular epidemiology of endemic pathogens in resource-limited settings. Transactions of the Royal Society of Tropical Medicine and Hygiene, 115(1), pp. 3-5. (doi: 10.1093/trstmh/traa086) (PMID:32945867) (PMCID:PMC7788292)

2020

Brunker, K. et al. (2020) Rapid in-country sequencing of whole virus genomes to inform rabies elimination programmes. Wellcome Open Research, 5, 3. (doi: 10.12688/wellcomeopenres.15518.2) (PMID:32090172) (PMCID:PMC7001756)

2018

Brunker, K. and Mollentze, N. (2018) Rabies virus. Trends in Microbiology, 26(10), pp. 886-887. (doi: 10.1016/j.tim.2018.07.001) (PMID:30072086)

Brunker, K. , Nadin-Davis, S. and Biek, R. (2018) Genomic sequencing, evolution and molecular epidemiology of rabies virus. Revue scientifique et technique (International Office of Epizootics), 37(2), pp. 401-408. (doi: 10.20506/rst.37.2.2810) (PMID:30747139)

Brunker, K. , Lemey, P., Marston, D. A., Fooks, A. R., Lugelo, A., Ngeleja, C., Hampson, K. and Biek, R. (2018) Landscape attributes governing local transmission of an endemic zoonosis: rabies virus in domestic dogs. Molecular Ecology, 27(3), pp. 773-788. (doi: 10.1111/mec.14470) (PMID:29274171) (PMCID:PMC5900915)

2017

Picard, C., Dallot, S., Brunker, K. , Berthier, K., Roumagnac, P., Soubeyrand, S., Jacquot, E. and Thébaud, G. (2017) Exploiting genetic information to trace plant virus dispersal in landscapes. Annual Review of Phytopathology, 55, pp. 139-160. (doi: 10.1146/annurev-phyto-080516-035616) (PMID:28525307)

Gilbert, L., Brunker, K. , Lande, U., Klingen, I. and Grøva, L. (2017) Environmental risk factors for Ixodes ricinus ticks and their infestation on lambs in a changing ecosystem: Implications for tick control and the impact of woodland encroachment on tick-borne disease in livestock. Agriculture, Ecosystems and Environment, 237, pp. 265-273. (doi: 10.1016/j.agee.2016.12.041)

2015

Brunker, K. et al. (2015) Elucidating the phylodynamics of endemic rabies virus in eastern Africa using whole-genome sequencing. Virus Evolution, 1(1), pp. 1-11. (doi: 10.1093/ve/vev011)

2012

Brunker, K., Hampson, K. , Horton, D.L. and Biek, R. (2012) Integrating the landscape epidemiology and genetics of RNA viruses: rabies in domestic dogs as a model. Parasitology, 139(14), pp. 1899-1913. (doi: 10.1017/S003118201200090X)

Decuypere, S., Vanaerschot, M., Brunker, K., Imamura, H., Muller, S., Khanal, B., Rijal, S., Dujardin, J. and Coombs, G.H. (2012) Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background. PLoS Neglected Tropical Diseases, 6(2), e1514. (doi: 10.1371/journal.pntd.0001514)

2010

t'Kindt, R. et al. (2010) Metabolomics to unveil and understand phenotypic diversity between pathogen populations. PLoS Neglected Tropical Diseases, 4(11), e904. (doi: 10.1371/journal.pntd.0000904)

This list was generated on Sun Dec 8 09:39:53 2024 GMT.
Jump to: Articles
Number of items: 24.

Articles

Durrant, R. et al. (2024) Examining the molecular clock hypothesis for the contemporary evolution of the rabies virus. PLoS Pathogens, 20(11), e1012740. (doi: 10.1371/journal.ppat.1012740) (PMID:39585914) (Early Online Publication)

Li, Y.-T., Ko, H.-Y., Hughes, J. , Liu, M.-T., Lin, Y.-L., Hampson, K. and Brunker, K. (2024) From emergence to endemicity: highly pathogenic H5 avian influenza viruses in Taiwan. Nature Communications, (doi: 10.1038/s41467-024-53816-y) (Early Online Publication)

Jaswant, G. et al. (2024) Molecular characterisation of human rabies in Tanzania and Kenya: a case series report and phylogenetic investigation. Infectious Diseases of Poverty, 13, 79. (doi: 10.1186/s40249-024-01245-w)

Sajib, M. S. I. , Brunker, K. , Oravcova, K. , Everest, P. , Murphy, M. E. and Forde, T. (2024) Advances in host depletion and pathogen enrichment methods for rapid sequencing-based diagnosis of bloodstream infection. Journal of Molecular Diagnostics, 26(9), pp. 741-753. (doi: 10.1016/j.jmoldx.2024.05.008) (PMID:38925458)

Brunker, K. (2024) Rapid pathogen surveillance: field-ready sequencing solutions. Nature Reviews Genetics, 25(8), 532. (doi: 10.1038/s41576-024-00734-w) (PMID:38684856)

Bautista, C., Jaswant, G., French, H., Campbell, K., Durrant, R. , Gifford, R. , Kia, G. S.N., Ogoti, B., Hampson, K. and Brunker, K. (2023) Whole genome sequencing for rapid characterization of rabies virus using nanopore technology. Journal of Visualized Experiments(191), e65414. (doi: 10.3791/65414) (PMID:37677046)

Lushasi, K. et al. (2023) Integrating contact tracing and whole-genome sequencing to track the elimination of dog-mediated rabies: an observational and genomic study. eLife, 12, e85262. (doi: 10.7554/elife.85262) (PMID:37227428) (PMCID:PMC10299823)

Campbell, K., Gifford, R. J. , Singer, J., Hill, V., O'Toole, A., Rambaut, A., Hampson, K. and Brunker, K. (2022) Making genomic surveillance deliver: a lineage classification and nomenclature system to inform rabies elimination. PLoS Pathogens, 18(5), e1010023. (doi: 10.1371/journal.ppat.1010023) (PMID:35500026) (PMCID:PMC9162366)

Mancy, R. et al. (2022) Rabies shows how scale of transmission can enable acute infections to persist at low prevalence. Science, 376(6592), pp. 512-516. (doi: 10.1126/science.abn0713) (PMID:35482879) (PMCID:PMC7613728)

Li, Y.-T. et al. (2022) Lineage BA.2 dominated the Omicron SARS-CoV-2 epidemic wave in the Philippines. Virus Evolution, 8(2), veac078. (doi: 10.1093/ve/veac078) (PMID:36090771) (PMCID:PMC9452094)

Li, K. K. et al. (2021) Genetic epidemiology of SARS-CoV-2 transmission in renal dialysis units - a high risk community-hospital interface. Journal of Infection, 83(1), pp. 96-103. (doi: 10.1016/j.jinf.2021.04.020) (PMID:33895226) (PMCID:PMC8061788)

Rihn, S. J. et al. (2021) A plasmid DNA-launched SARS-CoV-2 reverse genetics system and coronavirus toolkit for COVID-19 research. PLoS Biology, 19(2), e3001091. (doi: 10.1371/journal.pbio.3001091) (PMID:33630831) (PMCID:PMC7906417)

Da Silva Filipe, A. et al. (2021) Genomic epidemiology reveals multiple introductions of SARS-CoV-2 from mainland Europe into Scotland. Nature Microbiology, 6(1), pp. 112-122. (doi: 10.1038/s41564-020-00838-z) (PMID:33349681)

Faust, C. L. et al. (2021) Harnessing technology and portability to conduct molecular epidemiology of endemic pathogens in resource-limited settings. Transactions of the Royal Society of Tropical Medicine and Hygiene, 115(1), pp. 3-5. (doi: 10.1093/trstmh/traa086) (PMID:32945867) (PMCID:PMC7788292)

Brunker, K. et al. (2020) Rapid in-country sequencing of whole virus genomes to inform rabies elimination programmes. Wellcome Open Research, 5, 3. (doi: 10.12688/wellcomeopenres.15518.2) (PMID:32090172) (PMCID:PMC7001756)

Brunker, K. and Mollentze, N. (2018) Rabies virus. Trends in Microbiology, 26(10), pp. 886-887. (doi: 10.1016/j.tim.2018.07.001) (PMID:30072086)

Brunker, K. , Nadin-Davis, S. and Biek, R. (2018) Genomic sequencing, evolution and molecular epidemiology of rabies virus. Revue scientifique et technique (International Office of Epizootics), 37(2), pp. 401-408. (doi: 10.20506/rst.37.2.2810) (PMID:30747139)

Brunker, K. , Lemey, P., Marston, D. A., Fooks, A. R., Lugelo, A., Ngeleja, C., Hampson, K. and Biek, R. (2018) Landscape attributes governing local transmission of an endemic zoonosis: rabies virus in domestic dogs. Molecular Ecology, 27(3), pp. 773-788. (doi: 10.1111/mec.14470) (PMID:29274171) (PMCID:PMC5900915)

Picard, C., Dallot, S., Brunker, K. , Berthier, K., Roumagnac, P., Soubeyrand, S., Jacquot, E. and Thébaud, G. (2017) Exploiting genetic information to trace plant virus dispersal in landscapes. Annual Review of Phytopathology, 55, pp. 139-160. (doi: 10.1146/annurev-phyto-080516-035616) (PMID:28525307)

Gilbert, L., Brunker, K. , Lande, U., Klingen, I. and Grøva, L. (2017) Environmental risk factors for Ixodes ricinus ticks and their infestation on lambs in a changing ecosystem: Implications for tick control and the impact of woodland encroachment on tick-borne disease in livestock. Agriculture, Ecosystems and Environment, 237, pp. 265-273. (doi: 10.1016/j.agee.2016.12.041)

Brunker, K. et al. (2015) Elucidating the phylodynamics of endemic rabies virus in eastern Africa using whole-genome sequencing. Virus Evolution, 1(1), pp. 1-11. (doi: 10.1093/ve/vev011)

Brunker, K., Hampson, K. , Horton, D.L. and Biek, R. (2012) Integrating the landscape epidemiology and genetics of RNA viruses: rabies in domestic dogs as a model. Parasitology, 139(14), pp. 1899-1913. (doi: 10.1017/S003118201200090X)

Decuypere, S., Vanaerschot, M., Brunker, K., Imamura, H., Muller, S., Khanal, B., Rijal, S., Dujardin, J. and Coombs, G.H. (2012) Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background. PLoS Neglected Tropical Diseases, 6(2), e1514. (doi: 10.1371/journal.pntd.0001514)

t'Kindt, R. et al. (2010) Metabolomics to unveil and understand phenotypic diversity between pathogen populations. PLoS Neglected Tropical Diseases, 4(11), e904. (doi: 10.1371/journal.pntd.0000904)

This list was generated on Sun Dec 8 09:39:53 2024 GMT.

Grants

Grants and Awards listed are those received whilst working with the University of Glasgow.

  • Genomic Epidemiology to underpin One Health surveillance for rabies
    Medical Research Council
    2023 - 2025
     
  • Data-driven approaches for rabies elimination (renewal)
    Wellcome Trust
    2022 - 2027
     
  • Improving implementation and operation of a One Health platform to combat rabies in Malawi
    The Research Council of Norway
    2022 - 2027
     
  • Implementing genomic surveillance to support SARS-CoV-2 control and mitigation strategies in the Philippines
    Medical Research Council
    2020 - 2022
     
  • Moving from laboratory-based to real-time genomic surveillance of canine rabies virus in the field.
    Royal Society of Tropical Medicine and Hygiene
    2017 - 2017
     
  • Tracing transmission pathways of endemic canine rabies (ISSF Catalyst)
    Wellcome Trust
    2014 - 2015
     

Supervision

  • Sajib, Mohammad Saiful Islam
    Rapid sequencing-based detection of bacterial species and their antimicrobial resistance genes for improved patient outcomes in bloodstream infections