Professor Matthias Marti

  • Professor (Parasitology)

Research interests

Research Questions

Questions: A small proportion of asexually replicating cells switch to a non-replicative sexual cycle that culminates in the formation of transmission-competent mature gametocyte stages. These sexual cells are genetically identical but undergo significant morphological differentiation during development while sequestered in tissues. Specific questions my lab is focusing on: i) what are the triggers and mechanisms underlying the switch from asexual replication to sexual development? ii) What are the mechanisms of tissue homing and sequestration of sexual parasite stages? What makes a parasite infectious to mosquitoes? We have been developing a series of genetic, molecular and diagnostic tools in the last years to systematically investigate these questions under controlled in vitroconditions, and during human infection. In the following paragraphs specific research projects are described in more detail.

Current Research Projects

A sign of sexual commitment: understanding mechanisms of stage conversion 

In malaria parasites stage conversion is induced in late asexually replicating red blood cell stage parasites, whereby one parasite either produces only asexually or sexually committed invasive daughter parasites. After invasion of sexual parasites into red blood cells, additional factors determine progression toward transmission competent forms. Conceptually, stage conversion is probably analogous to antigenic switching: both appear to have a baseline switch rate that is regulated by epigenetic determinants, while environmental stimuli (either in the blood circulation or in the medium) are transduced into the parasites to modulate (i.e., increase or decrease) the switch rate. Indeed studies on culture-adapted parasite lines have identified specific chromosomal loci and, more recently, an epigenetic master switch required for the baseline switch rate. We first aim to test the hypothesis that specific parasite factors released into conditioned medium can regulate transmission stage formation within the population. Second we aim to identify the key pathways involved in stage conversion and the early steps of gametocyte differentiation. In a third step we will functionally analyze components of these pathways in order to gain mechanistic understanding of the process, both to close one of the key knowledge gaps in the malaria cycle and as the basis for interventions targeting malaria transmission.

Host cell modifications and tissue sequestration of P. falciparum transmission stages 

Only mature gametocytes are detectable in the blood circulation, except after some drug treatments, suggesting that the developing forms sequester in deep tissues. So far it is not known where gametocytes sequester, and whether sequestration is merely the result of mechanical entrapment or of active adherence mechanisms. The capability to sequester is of fundamental importance for asexual stage parasites to avoid clearance of the infected and highly rigid red blood cells during splenic passage. Asexual stage sequestration is a major cause of severe pathogenesis in falciparum malaria, particularly by occluding vessels in the brain in cerebral malaria. Consequently mechanisms of tissue-specific sequestration have been studied in great detail in asexual stage parasites and have led to the discovery of fascinating molecular processes of host cell manipulation and subversion by the parasite.

We aim to determine whether gametocyte sequestration sites and underlying mechanisms are identical or similar to those in asexual stages, or whether gametocytes have adopted a unique niche site of enrichment using as yet unknown mechanism of homing and sequestration. Our goal is to define sequestration sites in infected humans, and in parallel investigate mechanisms of sequestration in an in vitro model.

Development of tools for malaria elimination and eradication

The critical public health intervention in any infectious disease is to interrupt transmission. Plasmodium falciparum causes the most severe form of malaria with nearly 1 million deaths every year. Morbidity and mortality of the disease can be attributed to the asexual parasite stages residing and replicating every 48 hours within red blood cells. There is no natural protective immunity or effective vaccine against this stage, and drug resistance is widespread. New interventions for disease control are therefore imperative. A subset of red blood cell stages differentiates into male and female parasites, termed gametocytes, which undergo fertilization after transmission to a mosquito vector. Differentiation and development of transmission stages are therefore critical aspects of malaria biology and an important target for intervention strategies that aim at interrupting the cycle. Indeed, revived efforts for malaria elimination and eventual eradication have expanded the focus from controlling the disease of the most virulent species, P. falciparum, to interrupting transmission and targeting other species with high associated morbidity (mainly P. vivax). However, significant knowledge gaps remain in our understanding of transmission stage biology. Novel approaches are required to fill these important knowledge gaps. My lab is aiming to address these knowledge gaps, with particular focus on understanding the mechanisms of cellular differentiation, as well as gametocyte development and tissue sequestration in preparation to successful P. falciparum parasite transmission. 

 


Grants

Grants and Awards listed are those received whilst working with the University of Glasgow.

  • Wolfson Infectious Diseases Research Facility
    The Royal Society
    2018 - 2019
     
  • Elucidating mechanisms of extracellular vesiclemediated cellular communication and stage conversion in malaria parasites.
    Wellcome Trust
    2016 - 2021
     
  • BoneMalar
    European Research Council
    2016 - 2021
     
  • COSMIC
    European Research Council
    2015 - 2020
     

Publications

List by: Type | Date

Jump to: 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2000
Number of items: 61.

2018

Brancucci, N. M.B. , De Niz, M., Straub, T. J., Ravel, D., Sollelis, L., Birren, B. W., Voss, T. S., Neafsey, D. E. and Marti, M. (2018) Probing Plasmodium falciparum sexual commitment at the single-cell level. Wellcome Open Research, 3, 70. (doi:10.12688/wellcomeopenres.14645.4) (PMID:30320226) (PMCID:PMC6143928)

De Niz, M. et al. (2018) Plasmodium gametocytes display homing and vascular transmigration in the host bone marrow. Science Advances, 4(5), eaat3775. (doi:10.1126/sciadv.aat3775) (PMID:29806032) (PMCID:PMC5966192)

Obaldia III, N. et al. (2018) Bone marrow is a major parasite reservoir in Plasmodium vivax infection. mBio, 9(3), e00625-18. (doi:10.1128/mBio.00625-18) (PMID:29739900)

Fraschka, S. A. et al. (2018) Comparative heterochromatin profiling reveals conserved and unique epigenome signatures linked to adaptation and development of malaria parasites. Cell Host and Microbe, 23(3), 407-420.e8. (doi:10.1016/j.chom.2018.01.008) (PMID:29503181)

Stone, W. J.R. et al. (2018) Unravelling the immune signature of Plasmodium falciparum transmission-reducing immunity. Nature Communications, 9, 558. (doi:10.1038/s41467-017-02646-2) (PMID:29422648) (PMCID:PMC5805765)

Meerstein-Kessel, L. et al. (2018) Probabilistic data integration identifies reliable gametocyte-specific proteins and transcripts in malaria parasites. Scientific Reports, 8, 410. (doi:10.1038/s41598-017-18840-7) (PMID:29323249) (PMCID:PMC5765010)

Nilsson Bark, S. K. et al. (2018) Quantitative proteomic profiling reveals novel Plasmodium falciparum surface antigens and possible vaccine candidates. Molecular and Cellular Proteomics, 17(1), pp. 43-60. (doi:10.1074/mcp.RA117.000076) (PMID:29162636)

Kato, N., March, S., Bhatia, S. N. and Marti, M. (2018) Phenotypic screening of small molecules with antimalarial activity for three different parasitic life stages. In: Wagner, B. (ed.) Phenotypic Screening: Methods and Protocols. Series: Methods in molecular biology (1787). Humana Press: New York, NY, pp. 41-52. ISBN 9781493978465 (doi:10.1007/978-1-4939-7847-2_3)

2017

Mejia, P., Treviño-Villarreal, J. H., Reynolds, J. S., De Niz, M., Thompson, A., Marti, M. and Mitchell, J. R. (2017) A single rapamycin dose protects against late-stage experimental cerebral malaria via modulation of host immunity, endothelial activation and parasite sequestration. Malaria Journal, 16, 455. (doi:10.1186/s12936-017-2092-5) (PMID:29121917) (PMCID:PMC5679345)

Brancucci, N. M.B. et al. (2017) Lysophosphatidylcholine regulates sexual Stage differentiation in the human malaria parasite Plasmodium falciparum. Cell, 171(7), 1532-1544.e15. (doi:10.1016/j.cell.2017.10.020) (PMID:29129376) (PMCID:PMC5733390)

Meibalan, E. and Marti, M. (2017) Biology of malaria transmission. Cold Spring Harbor Perspectives in Medicine, 7(3), a025452. (doi:10.1101/cshperspect.a025452) (PMID:27836912)

2016

Coalson, J. E. et al. (2016) High prevalence of Plasmodium falciparum gametocyte infections in school-age children using molecular detection: patterns and predictors of risk from a cross-sectional study in southern Malawi. Malaria Journal, 15(1), 527. (doi:10.1186/s12936-016-1587-9) (PMID:27809907) (PMCID:PMC5096312)

Kato, N. et al. (2016) Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature, 538(7625), pp. 344-349. (doi:10.1038/nature19804) (PMID:27602946) (PMCID:PMC5515376)

Mantel, P.-Y. et al. (2016) Infected erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-miRNA complexes in malaria. Nature Communications, 7, 12727. (doi:10.1038/ncomms12727) (PMID:27721445) (PMCID:PMC5062468)

Marti, M. and Johnson, P. J. (2016) Emerging roles for extracellular vesicles in parasitic infections. Current Opinion in Microbiology, 32, pp. 66-70. (doi:10.1016/j.mib.2016.04.008) (PMID:27208506)

Marti, M. and Hill, K. L. (2016) Sensing and signaling in parasitism. Molecular and Biochemical Parasitology, 208(1), p. 1. (doi:10.1016/j.molbiopara.2016.07.010) (PMID:27546054) (PMCID:PMC5208041)

Joice, R. et al. (2016) Evidence for spleen dysfunction in malaria-HIV co-infection in a subset of pediatric patients. Modern Pathology, 29(4), pp. 381-390. (doi:10.1038/modpathol.2016.27) (PMID:26916076) (PMCID:PMC4811692)

STONE, W. J. R., DANTZLER, K. W., NILSSON, S. K., DRAKELEY, C. J., MARTI, M. , BOUSEMA, T. and RIJPMA, S. R. (2016) Naturally acquired immunity to sexual stage P. falciparum parasites. Parasitology, 143(02), pp. 187-198. (doi:10.1017/S0031182015001341) (PMID:26743529)

Chang, H.-H. et al. (2016) Persistence of Plasmodium falciparum parasitemia after artemisinin combination therapy: evidence from a randomized trial in Uganda. Scientific Reports, 6, p. 26330. (doi:10.1038/srep26330) (PMID:27197604) (PMCID:PMC4873826)

Obaldía III, N. et al. (2016) Altered drug susceptibility during host adaptation of a Plasmodium falciparum strain in a non-human primate model. Scientific Reports, 6, p. 21216. (doi:10.1038/srep21216) (PMID:26880111) (PMCID:PMC4754742)

2015

Pellé, K. G., Jiang, R. H. Y., Mantel, P.-Y., Xiao, Y.-P., Hjelmqvist, D., Gallego-Lopez, G. M., O.T. Lau, A., Kang, B.-H., Allred, D. R. and Marti, M. (2015) Shared elements of host-targeting pathways among apicomplexan parasites of differing lifestyles. Cellular Microbiology, 17(11), pp. 1618-1639. (doi:10.1111/cmi.12460) (PMID:25996544)

Gulati, S. et al. (2015) Profiling the essential nature of lipid metabolism in asexual blood and gametocyte stages of Plasmodium falciparum. Cell Host and Microbe, 18(3), pp. 371-381. (doi:10.1016/j.chom.2015.08.003) (PMID:26355219) (PMCID:PMC4567697)

Brancucci, N. M. B., Goldowitz, I., Buchholz, K., Werling, K. and Marti, M. (2015) An assay to probe Plasmodium falciparum growth, transmission stage formation and early gametocyte development. Nature Protocols, 10(8), pp. 1131-1142. (doi:10.1038/nprot.2015.072) (PMID:26134953) (PMCID:PMC4581880)

Dantzler, K. W., Ravel, D. B., Brancucci, N. M. and Marti, M. (2015) Ensuring transmission through dynamic host environments: host–pathogen interactions in Plasmodium sexual development. Current Opinion in Microbiology, 26, pp. 17-23. (doi:10.1016/j.mib.2015.03.005) (PMID:25867628) (PMCID:PMC4577303)

Nilsson, S. K., Childs, L. M., Buckee, C. and Marti, M. (2015) Targeting human transmission biology for malaria elimination. PLoS Pathogens, 11(6), e1004871. (doi:10.1371/journal.ppat.1004871) (PMID:26086192) (PMCID:PMC4472755)

Choi, J.-Y., Duraisingh, M. T., Marti, M. , Ben Mamoun, C. and Voelker, D. R. (2015) From protease to decarboxylase: the molecular metamorphosis of phosphatidylserine decarboxylase. Journal of Biological Chemistry, 290(17), pp. 10972-10980. (doi:10.1074/jbc.M115.642413) (PMID:25724650) (PMCID:PMC4409258)

Obaldia, N. et al. (2015) Clonal outbreak of Plasmodium falciparum infection in Eastern Panama. Journal of Infectious Diseases, 211(7), pp. 1087-1096. (doi:10.1093/infdis/jiu575) (PMID:25336725) (PMCID:PMC4366603)

Pelle, K. G. et al. (2015) Transcriptional profiling defines dynamics of parasite tissue sequestration during malaria infection. Genome Medicine, 7(1), 19. (doi:10.1186/s13073-015-0133-7) (PMID:25722744) (PMCID:PMC4342211)

2014

Tao, D. et al. (2014) Sex-partitioning of the Plasmodium falciparum stage V gametocyte proteome provides insight into falciparum-specific cell biology. Molecular and Cellular Proteomics, 13(10), pp. 2705-2724. (doi:10.1074/mcp.M114.040956) (PMID:25056935) (PMCID:PMC4188997)

Coleman, B. I. et al. (2014) A Plasmodium falciparum histone deacetylase regulates antigenic variation and gametocyte conversion. Cell Host and Microbe, 16(2), pp. 177-186. (doi:10.1016/j.chom.2014.06.014) (PMID:25121747) (PMCID:PMC4188636)

Joice, R. et al. (2014) Plasmodium falciparum transmission stages accumulate in the human bone marrow. Science Translational Medicine, 6(244), 244re5. (doi:10.1126/scitranslmed.3008882) (PMID:25009232) (PMCID:PMC4175394)

Spielmann, T., Marti, M. and Gilberger, T. W. (2014) Protein export. In: Kremsner, P. G. and Krishna, S. (eds.) Encyclopedia of Malaria. Springer: New York. ISBN 9781461487579 (doi:10.1007/978-1-4614-8757-9_35-1)

Ankarklev, J., Brancucci, N. M.B., Goldowitz, I., Mantel, P.-Y. and Marti, M. (2014) Sex: how malaria parasites get turned on. Current Biology, 24(9), R368-R370. (doi:10.1016/j.cub.2014.03.046) (PMID:24801188)

Mantel, P.-Y. and Marti, M. (2014) The role of extracellular vesicles in Plasmodium and other protozoan parasites. Cellular Microbiology, 16(3), pp. 344-354. (doi:10.1111/cmi.12259) (PMID:24406102) (PMCID:PMC3965572)

Aguilar, R. et al. (2014) Molecular evidence for the localization of Plasmodium falciparum immature gametocytes in bone marrow. Blood, 123(7), pp. 959-966. (doi:10.1182/blood-2013-08-520767) (PMID:24335496) (PMCID:PMC4067503)

2013

Przytycka, T. M. et al. (2013) Inferring developmental stage composition from gene expression in human malaria. PLoS Computational Biology, 9(12), e1003392. (doi:10.1371/journal.pcbi.1003392) (PMID:24348235) (PMCID:PMC3861035)

Mantel, P.-Y. et al. (2013) Malaria-infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system. Cell Host and Microbe, 13(5), pp. 521-534. (doi:10.1016/j.chom.2013.04.009) (PMID:23684304) (PMCID:PMC3687518)

Hanson, K.K. et al. (2013) Torins are potent antimalarials that block replenishment of Plasmodium liver stage parasitophorous vacuole membrane proteins. Proceedings of the National Academy of Sciences of the United States of America, 110(30), E2838-E2847. (doi:10.1073/pnas.1306097110) (PMID:23836641) (PMCID:PMC3725106)

Marti, M. and Spielmann, T. (2013) Protein export in malaria parasites: many membranes to cross. Current Opinion in Microbiology, 16(4), pp. 445-451. (doi:10.1016/j.mib.2013.04.010) (PMID:23725671) (PMCID:PMC3755040)

2012

Vorobjev, I. A., Buchholz, K., Prabhat, P., Ketman, K., Egan, E. S., Marti, M. , Duraisingh, M. T. and Barteneva, N. S. (2012) Optimization of flow cytometric detection and cell sorting of transgenic Plasmodium parasites using interchangeable optical filters. Malaria Journal, 11(1), p. 312. (doi:10.1186/1475-2875-11-312) (PMID:22950515) (PMCID:PMC3544587)

Aingaran, M. et al. (2012) Host cell deformability is linked to transmission in the human malaria parasite Plasmodium falciparum. Cellular Microbiology, 14(7), pp. 983-993. (doi:10.1111/j.1462-5822.2012.01786.x) (PMID:22417683) (PMCID:PMC3376226)

da Cruz, F. P. et al. (2012) Drug screen targeted at plasmodium liver stages identifies a potent multistage antimalarial drug. Journal of Infectious Diseases, 205(8), pp. 1278-1286. (doi:10.1093/infdis/jis184) (PMID:22396598) (PMCID:PMC3308910)

Jiang, R. H.Y. and Marti, M. (2012) A PIP gets the Plasmodium protein export pathway going. Cell Host and Microbe, 11(2), pp. 99-100. (doi:10.1016/j.chom.2012.01.011) (PMID:22341457)

2011

Morahan, B. J., Strobel, C., Hasan, U., Czesny, B., Mantel, P.-Y., Marti, M. , Eksi, S. and Williamson, K. C. (2011) Functional analysis of the exported type IV HSP40 Protein PfGECO in Plasmodium falciparum gametocytes. Eukaryotic Cell, 10(11), pp. 1492-1503. (doi:10.1128/EC.05155-11) (PMID:21965515) (PMCID:PMC3209067)

Buchholz, K., Burke, T. A., Williamson, K. C., Wiegand, R. C., Wirth, D. F. and Marti, M. (2011) A high-throughput screen targeting malaria transmission stages opens new avenues for drug development. Journal of Infectious Diseases, 203(10), pp. 1445-1453. (doi:10.1093/infdis/jir037) (PMID:21502082) (PMCID:PMC3080890)

2008

Struck, N. S. et al. (2008) Spatial dissection of the cis- and trans-Golgi compartments in the malaria parasite Plasmodium falciparum. Molecular Microbiology, 67(6), pp. 1320-1330. (doi:10.1111/j.1365-2958.2008.06125.x) (PMID:18284574)

Struck, N. S. et al. (2008) Plasmodium falciparum possesses two GRASP proteins that are differentially targeted to the Golgi complex via a higher- and lower-eukaryote-like mechanism. Journal of Cell Science, 121(13), pp. 2123-2129. (doi:10.1242/jcs.021154) (PMID:18522993)

2007

Maier, A. G., Rug, M., O'Neill, M. T., Beeson, J. G., Marti, M. , Reeder, J. and Cowman, A. F. (2007) Skeleton-binding protein 1 functions at the parasitophorous vacuole membrane to traffic PfEMP1 to the Plasmodium falciparum-infected erythrocyte surface. Blood, 109(3), pp. 1289-1297. (doi:10.1182/blood-2006-08-043364) (PMID:17023587) (PMCID:PMC1785152)

2006

Cooke, B. M., Buckingham, D. W., Glenister, F. K., Fernandez, K. M., Bannister, L. H., Marti, M. , Mohandas, N. and Coppel, R. L. (2006) A Maurer's cleft–associated protein is essential for expression of the major malaria virulence antigen on the surface of infected red blood cells. Journal of Cell Biology, 172(6), pp. 899-908. (doi:10.1083/jcb.200509122) (PMID:16520384) (PMCID:PMC2063733)

Sargeant, T. J., Marti, M. , Caler, E., Carlton, J. M., Simpson, K., Speed, T. P. and Cowman, A. F. (2006) Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites. Genome Biology, 7(2), R12. (doi:10.1186/gb-2006-7-2-r12) (PMID:16507167) (PMCID:PMC1431722)

2005

Struck, N. S., de Souza Dias, S., Langer, C., Marti, M. , Pearce, J. A., Cowman, A. F. and Gilberger, T. W. (2005) Re-defining the Golgi complex in Plasmodium falciparum using the novel Golgi marker PfGRASP. Journal of Cell Science, 118(23), pp. 5603-5613. (doi:10.1242/jcs.02673) (PMCID:16306223)

Marti, M. , Baum, J., Rug, M., Tilley, L. and Cowman, A. F. (2005) Signal-mediated export of proteins from the malaria parasite to the host erythrocyte. Journal of Cell Biology, 171(4), pp. 587-592. (doi:10.1083/jcb.200508051) (PMID:16301328) (PMCID:PMC2171567)

van Dooren, G. G., Marti, M. , Tonkin, C. J., Stimmler, L. M., Cowman, A. F. and McFadden, G. I. (2005) Development of the endoplasmic reticulum, mitochondrion and apicoplast during the asexual life cycle of Plasmodium falciparum. Molecular Microbiology, 57(2), pp. 405-419. (doi:10.1111/j.1365-2958.2005.04699.x) (PMID:15978074)

2004

Marti, M. , Good, R. T., Rug, M., Knueppfer, E. and Cowman, A. F. (2004) Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science, 306(5703), pp. 1930-1933. (doi:10.1126/science.1102452) (PMID:15591202)

Hehl, A. B. and Marti, M. (2004) Secretory protein trafficking in Giardia intestinalis. Molecular Microbiology, 53(1), pp. 19-28. (doi:10.1111/j.1365-2958.2004.04115.x) (PMID:15225300)

2003

Marti, M. and Hehl, A. B. (2003) Encystation-specific vesicles in Giardia: a primordial Golgi or just another secretory compartment? Trends in Parasitology, 19(10), pp. 440-446. (doi:10.1016/S1471-4922(03)00201-0) (PMID:14519581)

Marti, M. , Regös, A., Li, Y., Schraner, E. M., Wild, P., Müller, N., Knopf, L. G. and Hehl, A. B. (2003) An ancestral secretory apparatus in the protozoan parasite Giardia intestinalis. Journal of Biological Chemistry, 278(27), pp. 24837-24848. (doi:10.1074/jbc.M302082200) (PMID:12711599)

Marti, M. , Li, Y., Schraner, E. M., Wild, P., Köhler, P. and Hehl, A. B. (2003) The secretory apparatus of an ancient eukaryote: protein sorting to separate export pathways occurs before formation of transient Golgi-like compartments. Molecular Biology of the Cell, 14(4), pp. 1433-1447. (doi:10.1091/mbc.E02-08-0467) (PMID:12686599) (PMCID:PMC153112)

2002

Marti, M. , Li, Y., Köhler, P. and Hehl, A. B. (2002) Conformationally correct expression of membrane-anchored Toxoplasma gondii SAG1 in the primitive protozoan Giardia duodenalis. Infection and Immunity, 70(2), pp. 1014-1016. (doi:10.1128/IAI.70.2.1014-1016.2002) (PMID:11796643) (PMCID:PMC127713)

2000

Hehl, A. B., Marti, M. and Köhler, P. (2000) Stage-specific expression and targeting of cyst wall protein-green fluorescent protein chimeras in Giardia. Molecular Biology of the Cell, 11(5), pp. 1789-1800. (doi:10.1091/mbc.11.5.1789) (PMID:10793152) (PMCID:PMC14884)

Subramanian, A. B., Navarro, S., Carrasco, R. A., Marti, M. and Das, S. (2000) Role of exogenous inositol and phosphatidylinositol in glycosylphosphatidylinositol anchor synthesis of GP49 by Giardia lamblia. Biochimica et Biophysica Acta: Molecular and Cell Biology of Lipids, 1483(1), pp. 69-80. (doi:10.1016/S1388-1981(99)00171-7) (PMID:10601696)

This list was generated on Wed Dec 12 14:40:08 2018 GMT.
Number of items: 61.

Articles

Brancucci, N. M.B. , De Niz, M., Straub, T. J., Ravel, D., Sollelis, L., Birren, B. W., Voss, T. S., Neafsey, D. E. and Marti, M. (2018) Probing Plasmodium falciparum sexual commitment at the single-cell level. Wellcome Open Research, 3, 70. (doi:10.12688/wellcomeopenres.14645.4) (PMID:30320226) (PMCID:PMC6143928)

De Niz, M. et al. (2018) Plasmodium gametocytes display homing and vascular transmigration in the host bone marrow. Science Advances, 4(5), eaat3775. (doi:10.1126/sciadv.aat3775) (PMID:29806032) (PMCID:PMC5966192)

Obaldia III, N. et al. (2018) Bone marrow is a major parasite reservoir in Plasmodium vivax infection. mBio, 9(3), e00625-18. (doi:10.1128/mBio.00625-18) (PMID:29739900)

Fraschka, S. A. et al. (2018) Comparative heterochromatin profiling reveals conserved and unique epigenome signatures linked to adaptation and development of malaria parasites. Cell Host and Microbe, 23(3), 407-420.e8. (doi:10.1016/j.chom.2018.01.008) (PMID:29503181)

Stone, W. J.R. et al. (2018) Unravelling the immune signature of Plasmodium falciparum transmission-reducing immunity. Nature Communications, 9, 558. (doi:10.1038/s41467-017-02646-2) (PMID:29422648) (PMCID:PMC5805765)

Meerstein-Kessel, L. et al. (2018) Probabilistic data integration identifies reliable gametocyte-specific proteins and transcripts in malaria parasites. Scientific Reports, 8, 410. (doi:10.1038/s41598-017-18840-7) (PMID:29323249) (PMCID:PMC5765010)

Nilsson Bark, S. K. et al. (2018) Quantitative proteomic profiling reveals novel Plasmodium falciparum surface antigens and possible vaccine candidates. Molecular and Cellular Proteomics, 17(1), pp. 43-60. (doi:10.1074/mcp.RA117.000076) (PMID:29162636)

Mejia, P., Treviño-Villarreal, J. H., Reynolds, J. S., De Niz, M., Thompson, A., Marti, M. and Mitchell, J. R. (2017) A single rapamycin dose protects against late-stage experimental cerebral malaria via modulation of host immunity, endothelial activation and parasite sequestration. Malaria Journal, 16, 455. (doi:10.1186/s12936-017-2092-5) (PMID:29121917) (PMCID:PMC5679345)

Brancucci, N. M.B. et al. (2017) Lysophosphatidylcholine regulates sexual Stage differentiation in the human malaria parasite Plasmodium falciparum. Cell, 171(7), 1532-1544.e15. (doi:10.1016/j.cell.2017.10.020) (PMID:29129376) (PMCID:PMC5733390)

Meibalan, E. and Marti, M. (2017) Biology of malaria transmission. Cold Spring Harbor Perspectives in Medicine, 7(3), a025452. (doi:10.1101/cshperspect.a025452) (PMID:27836912)

Coalson, J. E. et al. (2016) High prevalence of Plasmodium falciparum gametocyte infections in school-age children using molecular detection: patterns and predictors of risk from a cross-sectional study in southern Malawi. Malaria Journal, 15(1), 527. (doi:10.1186/s12936-016-1587-9) (PMID:27809907) (PMCID:PMC5096312)

Kato, N. et al. (2016) Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature, 538(7625), pp. 344-349. (doi:10.1038/nature19804) (PMID:27602946) (PMCID:PMC5515376)

Mantel, P.-Y. et al. (2016) Infected erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-miRNA complexes in malaria. Nature Communications, 7, 12727. (doi:10.1038/ncomms12727) (PMID:27721445) (PMCID:PMC5062468)

Marti, M. and Johnson, P. J. (2016) Emerging roles for extracellular vesicles in parasitic infections. Current Opinion in Microbiology, 32, pp. 66-70. (doi:10.1016/j.mib.2016.04.008) (PMID:27208506)

Marti, M. and Hill, K. L. (2016) Sensing and signaling in parasitism. Molecular and Biochemical Parasitology, 208(1), p. 1. (doi:10.1016/j.molbiopara.2016.07.010) (PMID:27546054) (PMCID:PMC5208041)

Joice, R. et al. (2016) Evidence for spleen dysfunction in malaria-HIV co-infection in a subset of pediatric patients. Modern Pathology, 29(4), pp. 381-390. (doi:10.1038/modpathol.2016.27) (PMID:26916076) (PMCID:PMC4811692)

STONE, W. J. R., DANTZLER, K. W., NILSSON, S. K., DRAKELEY, C. J., MARTI, M. , BOUSEMA, T. and RIJPMA, S. R. (2016) Naturally acquired immunity to sexual stage P. falciparum parasites. Parasitology, 143(02), pp. 187-198. (doi:10.1017/S0031182015001341) (PMID:26743529)

Chang, H.-H. et al. (2016) Persistence of Plasmodium falciparum parasitemia after artemisinin combination therapy: evidence from a randomized trial in Uganda. Scientific Reports, 6, p. 26330. (doi:10.1038/srep26330) (PMID:27197604) (PMCID:PMC4873826)

Obaldía III, N. et al. (2016) Altered drug susceptibility during host adaptation of a Plasmodium falciparum strain in a non-human primate model. Scientific Reports, 6, p. 21216. (doi:10.1038/srep21216) (PMID:26880111) (PMCID:PMC4754742)

Pellé, K. G., Jiang, R. H. Y., Mantel, P.-Y., Xiao, Y.-P., Hjelmqvist, D., Gallego-Lopez, G. M., O.T. Lau, A., Kang, B.-H., Allred, D. R. and Marti, M. (2015) Shared elements of host-targeting pathways among apicomplexan parasites of differing lifestyles. Cellular Microbiology, 17(11), pp. 1618-1639. (doi:10.1111/cmi.12460) (PMID:25996544)

Gulati, S. et al. (2015) Profiling the essential nature of lipid metabolism in asexual blood and gametocyte stages of Plasmodium falciparum. Cell Host and Microbe, 18(3), pp. 371-381. (doi:10.1016/j.chom.2015.08.003) (PMID:26355219) (PMCID:PMC4567697)

Brancucci, N. M. B., Goldowitz, I., Buchholz, K., Werling, K. and Marti, M. (2015) An assay to probe Plasmodium falciparum growth, transmission stage formation and early gametocyte development. Nature Protocols, 10(8), pp. 1131-1142. (doi:10.1038/nprot.2015.072) (PMID:26134953) (PMCID:PMC4581880)

Dantzler, K. W., Ravel, D. B., Brancucci, N. M. and Marti, M. (2015) Ensuring transmission through dynamic host environments: host–pathogen interactions in Plasmodium sexual development. Current Opinion in Microbiology, 26, pp. 17-23. (doi:10.1016/j.mib.2015.03.005) (PMID:25867628) (PMCID:PMC4577303)

Nilsson, S. K., Childs, L. M., Buckee, C. and Marti, M. (2015) Targeting human transmission biology for malaria elimination. PLoS Pathogens, 11(6), e1004871. (doi:10.1371/journal.ppat.1004871) (PMID:26086192) (PMCID:PMC4472755)

Choi, J.-Y., Duraisingh, M. T., Marti, M. , Ben Mamoun, C. and Voelker, D. R. (2015) From protease to decarboxylase: the molecular metamorphosis of phosphatidylserine decarboxylase. Journal of Biological Chemistry, 290(17), pp. 10972-10980. (doi:10.1074/jbc.M115.642413) (PMID:25724650) (PMCID:PMC4409258)

Obaldia, N. et al. (2015) Clonal outbreak of Plasmodium falciparum infection in Eastern Panama. Journal of Infectious Diseases, 211(7), pp. 1087-1096. (doi:10.1093/infdis/jiu575) (PMID:25336725) (PMCID:PMC4366603)

Pelle, K. G. et al. (2015) Transcriptional profiling defines dynamics of parasite tissue sequestration during malaria infection. Genome Medicine, 7(1), 19. (doi:10.1186/s13073-015-0133-7) (PMID:25722744) (PMCID:PMC4342211)

Tao, D. et al. (2014) Sex-partitioning of the Plasmodium falciparum stage V gametocyte proteome provides insight into falciparum-specific cell biology. Molecular and Cellular Proteomics, 13(10), pp. 2705-2724. (doi:10.1074/mcp.M114.040956) (PMID:25056935) (PMCID:PMC4188997)

Coleman, B. I. et al. (2014) A Plasmodium falciparum histone deacetylase regulates antigenic variation and gametocyte conversion. Cell Host and Microbe, 16(2), pp. 177-186. (doi:10.1016/j.chom.2014.06.014) (PMID:25121747) (PMCID:PMC4188636)

Joice, R. et al. (2014) Plasmodium falciparum transmission stages accumulate in the human bone marrow. Science Translational Medicine, 6(244), 244re5. (doi:10.1126/scitranslmed.3008882) (PMID:25009232) (PMCID:PMC4175394)

Ankarklev, J., Brancucci, N. M.B., Goldowitz, I., Mantel, P.-Y. and Marti, M. (2014) Sex: how malaria parasites get turned on. Current Biology, 24(9), R368-R370. (doi:10.1016/j.cub.2014.03.046) (PMID:24801188)

Mantel, P.-Y. and Marti, M. (2014) The role of extracellular vesicles in Plasmodium and other protozoan parasites. Cellular Microbiology, 16(3), pp. 344-354. (doi:10.1111/cmi.12259) (PMID:24406102) (PMCID:PMC3965572)

Aguilar, R. et al. (2014) Molecular evidence for the localization of Plasmodium falciparum immature gametocytes in bone marrow. Blood, 123(7), pp. 959-966. (doi:10.1182/blood-2013-08-520767) (PMID:24335496) (PMCID:PMC4067503)

Przytycka, T. M. et al. (2013) Inferring developmental stage composition from gene expression in human malaria. PLoS Computational Biology, 9(12), e1003392. (doi:10.1371/journal.pcbi.1003392) (PMID:24348235) (PMCID:PMC3861035)

Mantel, P.-Y. et al. (2013) Malaria-infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system. Cell Host and Microbe, 13(5), pp. 521-534. (doi:10.1016/j.chom.2013.04.009) (PMID:23684304) (PMCID:PMC3687518)

Hanson, K.K. et al. (2013) Torins are potent antimalarials that block replenishment of Plasmodium liver stage parasitophorous vacuole membrane proteins. Proceedings of the National Academy of Sciences of the United States of America, 110(30), E2838-E2847. (doi:10.1073/pnas.1306097110) (PMID:23836641) (PMCID:PMC3725106)

Marti, M. and Spielmann, T. (2013) Protein export in malaria parasites: many membranes to cross. Current Opinion in Microbiology, 16(4), pp. 445-451. (doi:10.1016/j.mib.2013.04.010) (PMID:23725671) (PMCID:PMC3755040)

Vorobjev, I. A., Buchholz, K., Prabhat, P., Ketman, K., Egan, E. S., Marti, M. , Duraisingh, M. T. and Barteneva, N. S. (2012) Optimization of flow cytometric detection and cell sorting of transgenic Plasmodium parasites using interchangeable optical filters. Malaria Journal, 11(1), p. 312. (doi:10.1186/1475-2875-11-312) (PMID:22950515) (PMCID:PMC3544587)

Aingaran, M. et al. (2012) Host cell deformability is linked to transmission in the human malaria parasite Plasmodium falciparum. Cellular Microbiology, 14(7), pp. 983-993. (doi:10.1111/j.1462-5822.2012.01786.x) (PMID:22417683) (PMCID:PMC3376226)

da Cruz, F. P. et al. (2012) Drug screen targeted at plasmodium liver stages identifies a potent multistage antimalarial drug. Journal of Infectious Diseases, 205(8), pp. 1278-1286. (doi:10.1093/infdis/jis184) (PMID:22396598) (PMCID:PMC3308910)

Jiang, R. H.Y. and Marti, M. (2012) A PIP gets the Plasmodium protein export pathway going. Cell Host and Microbe, 11(2), pp. 99-100. (doi:10.1016/j.chom.2012.01.011) (PMID:22341457)

Morahan, B. J., Strobel, C., Hasan, U., Czesny, B., Mantel, P.-Y., Marti, M. , Eksi, S. and Williamson, K. C. (2011) Functional analysis of the exported type IV HSP40 Protein PfGECO in Plasmodium falciparum gametocytes. Eukaryotic Cell, 10(11), pp. 1492-1503. (doi:10.1128/EC.05155-11) (PMID:21965515) (PMCID:PMC3209067)

Buchholz, K., Burke, T. A., Williamson, K. C., Wiegand, R. C., Wirth, D. F. and Marti, M. (2011) A high-throughput screen targeting malaria transmission stages opens new avenues for drug development. Journal of Infectious Diseases, 203(10), pp. 1445-1453. (doi:10.1093/infdis/jir037) (PMID:21502082) (PMCID:PMC3080890)

Struck, N. S. et al. (2008) Spatial dissection of the cis- and trans-Golgi compartments in the malaria parasite Plasmodium falciparum. Molecular Microbiology, 67(6), pp. 1320-1330. (doi:10.1111/j.1365-2958.2008.06125.x) (PMID:18284574)

Struck, N. S. et al. (2008) Plasmodium falciparum possesses two GRASP proteins that are differentially targeted to the Golgi complex via a higher- and lower-eukaryote-like mechanism. Journal of Cell Science, 121(13), pp. 2123-2129. (doi:10.1242/jcs.021154) (PMID:18522993)

Maier, A. G., Rug, M., O'Neill, M. T., Beeson, J. G., Marti, M. , Reeder, J. and Cowman, A. F. (2007) Skeleton-binding protein 1 functions at the parasitophorous vacuole membrane to traffic PfEMP1 to the Plasmodium falciparum-infected erythrocyte surface. Blood, 109(3), pp. 1289-1297. (doi:10.1182/blood-2006-08-043364) (PMID:17023587) (PMCID:PMC1785152)

Cooke, B. M., Buckingham, D. W., Glenister, F. K., Fernandez, K. M., Bannister, L. H., Marti, M. , Mohandas, N. and Coppel, R. L. (2006) A Maurer's cleft–associated protein is essential for expression of the major malaria virulence antigen on the surface of infected red blood cells. Journal of Cell Biology, 172(6), pp. 899-908. (doi:10.1083/jcb.200509122) (PMID:16520384) (PMCID:PMC2063733)

Sargeant, T. J., Marti, M. , Caler, E., Carlton, J. M., Simpson, K., Speed, T. P. and Cowman, A. F. (2006) Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites. Genome Biology, 7(2), R12. (doi:10.1186/gb-2006-7-2-r12) (PMID:16507167) (PMCID:PMC1431722)

Struck, N. S., de Souza Dias, S., Langer, C., Marti, M. , Pearce, J. A., Cowman, A. F. and Gilberger, T. W. (2005) Re-defining the Golgi complex in Plasmodium falciparum using the novel Golgi marker PfGRASP. Journal of Cell Science, 118(23), pp. 5603-5613. (doi:10.1242/jcs.02673) (PMCID:16306223)

Marti, M. , Baum, J., Rug, M., Tilley, L. and Cowman, A. F. (2005) Signal-mediated export of proteins from the malaria parasite to the host erythrocyte. Journal of Cell Biology, 171(4), pp. 587-592. (doi:10.1083/jcb.200508051) (PMID:16301328) (PMCID:PMC2171567)

van Dooren, G. G., Marti, M. , Tonkin, C. J., Stimmler, L. M., Cowman, A. F. and McFadden, G. I. (2005) Development of the endoplasmic reticulum, mitochondrion and apicoplast during the asexual life cycle of Plasmodium falciparum. Molecular Microbiology, 57(2), pp. 405-419. (doi:10.1111/j.1365-2958.2005.04699.x) (PMID:15978074)

Marti, M. , Good, R. T., Rug, M., Knueppfer, E. and Cowman, A. F. (2004) Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science, 306(5703), pp. 1930-1933. (doi:10.1126/science.1102452) (PMID:15591202)

Hehl, A. B. and Marti, M. (2004) Secretory protein trafficking in Giardia intestinalis. Molecular Microbiology, 53(1), pp. 19-28. (doi:10.1111/j.1365-2958.2004.04115.x) (PMID:15225300)

Marti, M. and Hehl, A. B. (2003) Encystation-specific vesicles in Giardia: a primordial Golgi or just another secretory compartment? Trends in Parasitology, 19(10), pp. 440-446. (doi:10.1016/S1471-4922(03)00201-0) (PMID:14519581)

Marti, M. , Regös, A., Li, Y., Schraner, E. M., Wild, P., Müller, N., Knopf, L. G. and Hehl, A. B. (2003) An ancestral secretory apparatus in the protozoan parasite Giardia intestinalis. Journal of Biological Chemistry, 278(27), pp. 24837-24848. (doi:10.1074/jbc.M302082200) (PMID:12711599)

Marti, M. , Li, Y., Schraner, E. M., Wild, P., Köhler, P. and Hehl, A. B. (2003) The secretory apparatus of an ancient eukaryote: protein sorting to separate export pathways occurs before formation of transient Golgi-like compartments. Molecular Biology of the Cell, 14(4), pp. 1433-1447. (doi:10.1091/mbc.E02-08-0467) (PMID:12686599) (PMCID:PMC153112)

Marti, M. , Li, Y., Köhler, P. and Hehl, A. B. (2002) Conformationally correct expression of membrane-anchored Toxoplasma gondii SAG1 in the primitive protozoan Giardia duodenalis. Infection and Immunity, 70(2), pp. 1014-1016. (doi:10.1128/IAI.70.2.1014-1016.2002) (PMID:11796643) (PMCID:PMC127713)

Hehl, A. B., Marti, M. and Köhler, P. (2000) Stage-specific expression and targeting of cyst wall protein-green fluorescent protein chimeras in Giardia. Molecular Biology of the Cell, 11(5), pp. 1789-1800. (doi:10.1091/mbc.11.5.1789) (PMID:10793152) (PMCID:PMC14884)

Subramanian, A. B., Navarro, S., Carrasco, R. A., Marti, M. and Das, S. (2000) Role of exogenous inositol and phosphatidylinositol in glycosylphosphatidylinositol anchor synthesis of GP49 by Giardia lamblia. Biochimica et Biophysica Acta: Molecular and Cell Biology of Lipids, 1483(1), pp. 69-80. (doi:10.1016/S1388-1981(99)00171-7) (PMID:10601696)

Book Sections

Kato, N., March, S., Bhatia, S. N. and Marti, M. (2018) Phenotypic screening of small molecules with antimalarial activity for three different parasitic life stages. In: Wagner, B. (ed.) Phenotypic Screening: Methods and Protocols. Series: Methods in molecular biology (1787). Humana Press: New York, NY, pp. 41-52. ISBN 9781493978465 (doi:10.1007/978-1-4939-7847-2_3)

Spielmann, T., Marti, M. and Gilberger, T. W. (2014) Protein export. In: Kremsner, P. G. and Krishna, S. (eds.) Encyclopedia of Malaria. Springer: New York. ISBN 9781461487579 (doi:10.1007/978-1-4614-8757-9_35-1)

This list was generated on Wed Dec 12 14:40:08 2018 GMT.