Professor Payam Gammage

  • Professor of Mitochondrial Biology (CRUK Scotland Institute)

Publications

List by: Type | Date

Jump to: 2025 | 2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2016 | 2014 | 2013 | 2012
Number of items: 26.

2025

Samarakoon, Y. et al. (2025) UNC119 regulates T-cell receptor signalling in primary T cells and T acute lymphocytic leukaemia. Life Science Alliance, 8(3), e202403066. (doi: 10.26508/lsa.202403066) (PMID:39814552) (PMCID:PMC11735834)

2024

Mahmood, M. et al. (2024) Mitochondrial DNA mutations drive aerobic glycolysis to enhance checkpoint blockade response in melanoma. Nature Cancer, (doi: 10.1038/s43018-023-00721-w) (PMID:38286828) (Early Online Publication)

2023

Shaw, Andrew M. and Gammage, Payam A. ORCID logoORCID: https://orcid.org/0000-0003-1968-1726 (2023) Coupling Differential Centrifugation with Exonuclease Treatment and Size Exclusion Chromatography (DIFSEC) for purification of mtDNA from mammalian cells. In: Mitochondrial DNA: Methods and Protocols. Series: Methods in molecular biology (2615). Springer: New York, pp. 31-40. ISBN 9781071629215

2022

Cancer Research Technology Ltd, Memorial Sloan Kettering Cancer Center (2022) Tumor Stratification. .

Cancer Research Technology Ltd (2022) Tumor Sensitation. .

Kim, Minsoo, Mahmood, Mahnoor, Reznik, Ed and Gammage, Payam A. ORCID logoORCID: https://orcid.org/0000-0003-1968-1726 (2022) Mitochondrial DNA is a major source of driver mutations in cancer. Trends in Cancer, 8(12), pp. 1046-1059. (doi: 10.1016/j.trecan.2022.08.001) (PMID:36041967) (PMCID:PMC9671861)

Ganly, I. et al. (2022) Mitonuclear genotype remodels the metabolic and microenvironmental landscape of Hürthle cell carcinoma. Science Advances, 8(25), eabn9699. (doi: 10.1126/sciadv.abn9699) (PMID:35731870) (PMCID:PMC9216518)

2021

Rabas, N. et al. (2021) PINK1 drives production of mtDNA-containing extracellular vesicles to promote invasiveness. Journal of Cell Biology, 220(12), e202006049. (doi: 10.1083/jcb.202006049) (PMID:34623384) (PMCID:PMC8641410)

Gorelick, Alexander N., Kim, Minsoo, Chatila, Walid K., La, Konnor, Hakimi, A. Ari, Berger, Michael F., Taylor, Barry S., Gammage, Payam A. ORCID logoORCID: https://orcid.org/0000-0003-1968-1726 and Reznik, Ed (2021) Respiratory complex and tissue lineage drive recurrent mutations in tumour mtDNA. Nature Metabolism, 3(4), pp. 558-570. (doi: 10.1038/s42255-021-00378-8) (PMID:33833465) (PMCID:PMC9304985)

2020

Bacman, Sandra R., Gammage, P.A. ORCID logoORCID: https://orcid.org/0000-0003-1968-1726, Minczuk, M. and Moraes, C.T. (2020) Manipulation of mitochondrial genes and mtDNA heteroplasmy. In: Pon, Liza A. and Schon, Eric A. (eds.) Mitochondira. 3rd Edition. Series: Methods in cell biology. Academic Press: Amsterdam, pp. 441-487. ISBN 9780128202289 (doi: 10.1016/bs.mcb.2019.12.004)

2019

Andreazza, S. et al. (2019) Mitochondrially-targeted APOBEC1 is a potent mtDNA mutator affecting mitochondrial function and organismal fitness in Drosophila. Nature Communications, 10, 3280. (doi: 10.1038/s41467-019-10857-y) (PMID:31337756) (PMCID:PMC6650417)

Gammage, Payam A. ORCID logoORCID: https://orcid.org/0000-0003-1968-1726 and Frezza, Christian (2019) Mitochondrial DNA: the overlooked oncogenome? BMC Biology, 17(1), 53. (doi: 10.1186/s12915-019-0668-y) (PMID:31286943) (PMCID:PMC6615100)

Beard, Daniel A., Hoitzing, Hanne, Gammage, Payam A. ORCID logoORCID: https://orcid.org/0000-0003-1968-1726, Haute, Lindsey Van, Minczuk, Michal, Johnston, Iain G. and Jones, Nick S. (2019) Energetic costs of cellular and therapeutic control of stochastic mitochondrial DNA populations. PLoS Computational Biology, 15(6), e1007023. (doi: 10.1371/journal.pcbi.1007023) (PMID:31242175) (PMCID:PMC6615642)

2018

Gammage, P. A. et al. (2018) Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nature Medicine, 24(11), pp. 1691-1695. (doi: 10.1038/s41591-018-0165-9) (PMID:30250142) (PMCID:PMC6225988)

Peeva, V. et al. (2018) Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nature Communications, 9, 1727. (doi: 10.1038/s41467-018-04131-w) (PMID:29712893) (PMCID:PMC5928156)

Gammage, Payam A. ORCID logoORCID: https://orcid.org/0000-0003-1968-1726, Moraes, Carlos T. and Minczuk, Michal (2018) Mitochondrial genome engineering: the revolution may not be CRISPR-ized. Trends in Genetics, 34(2), pp. 101-110. (doi: 10.1016/j.tig.2017.11.001) (PMID:29179920) (PMCID:PMC5783712)

Gaude, E. et al. (2018) NADH shuttling couples cytosolic reductive carboxylation of glutamine with glycolysis in cells with mitochondrial dysfunction. Molecular Cell, 69(4), 581-593.e7. (doi: 10.1016/j.molcel.2018.01.034) (PMID:29452638) (PMCID:PMC5823973)

Kullar, P. J. et al. (2018) Heterozygous SSBP1 start loss mutation co-segregates with hearing loss and the m.1555A>G mtDNA variant in a large multigenerational family. Brain, 141(1), pp. 55-62. (doi: 10.1093/brain/awx295) (PMID:29182774) (PMCID:PMC5837410)

Gammage, Payam A. ORCID logoORCID: https://orcid.org/0000-0003-1968-1726 and Minczuk, Michal (2018) Enhanced manipulation of human mitochondrial DNA heteroplasmy in vitro using tunable mtZFN technology. In: Liu, Jia (ed.) Zinc Finger Proteins. Series: Methods in molecular biology (1867). Humana Press: New York, pp. 43-56. ISBN 9781493987986 (doi: 10.1007/978-1-4939-8799-3_4)

McCann, Beverly J., Cox, Andy, Gammage, Payam A. ORCID logoORCID: https://orcid.org/0000-0003-1968-1726, Stewart, James B., Zernicka-Goetz, Magdalena and Minczuk, Michal (2018) Delivery of mtZFNs into early mouse embryos. In: Liu, Jia (ed.) Zinc Finger Proteins. Series: Methods in molecular biology (1867). Humana Press: New York, pp. 215-228. (doi: 10.1007/978-1-4939-8799-3_16)

2016

Gammage, P. A. et al. (2016) Near-complete elimination of mutant mtDNA by iterative or dynamic dose-controlled treatment with mtZFNs. Nucleic Acids Research, 44(16), pp. 7804-7816. (doi: 10.1093/nar/gkw676) (PMID:27466392) (PMCID:PMC5027515)

Gammage, Payam A. ORCID logoORCID: https://orcid.org/0000-0003-1968-1726, Van Haute, Lindsey and Minczuk, Michal (2016) Engineered mtZFNs for manipulation of human mitochondrial DNA heteroplasmy. In: Mitochondrial DNA. Series: Methods in molecular biology, 1351 (1351). Humana Press: New York, pp. 145-162. ISBN 9781493930395 (doi: 10.1007/978-1-4939-3040-1_11)

2014

Gammage, Payam A ORCID logoORCID: https://orcid.org/0000-0003-1968-1726, Rorbach, Joanna, Vincent, Anna I., Rebar, Edward J. and Minczuk, Michal (2014) Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large‐scale deletions or point mutations. EMBO Molecular Medicine, 6(4), pp. 458-466. (doi: 10.1002/emmm.201303672) (PMID:24567072) (PMCID:PMC3992073)

Rorbach, Joanna, Boesch, Pierre, Gammage, Payam A. ORCID logoORCID: https://orcid.org/0000-0003-1968-1726, Nicholls, Thomas J.J., Pearce, Sarah F., Patel, Dipali, Hauser, Andreas, Perocchi, Fabiana, Minczuk, Michal and Wolin, Sandra (2014) MRM2 and MRM3 are involved in biogenesis of the large subunit of the mitochondrial ribosome. Molecular Biology of the Cell, 25(17), pp. 2542-2555. (doi: 10.1091/mbc.e14-01-0014) (PMID:25009282) (PMCID:PMC4148245)

2013

Kazak, Lawrence, Reyes, Aurelio, Duncan, Anna L., Rorbach, Joanna, Wood, Stuart R., Brea-Calvo, Gloria, Gammage, Payam A. ORCID logoORCID: https://orcid.org/0000-0003-1968-1726, Robinson, Alan J., Minczuk, Michal and Holt, Ian J. (2013) Alternative translation initiation augments the human mitochondrial proteome. Nucleic Acids Research, 41(4), pp. 2354-2369. (doi: 10.1093/nar/gks1347) (PMID:23275553) (PMCID:PMC3575844)

2012

Rorbach, Joanna, Gammage, Payam A. ORCID logoORCID: https://orcid.org/0000-0003-1968-1726 and Minczuk, Michal (2012) C7orf30 is necessary for biogenesis of the large subunit of the mitochondrial ribosome. Nucleic Acids Research, 40(9), pp. 4097-4109. (doi: 10.1093/nar/gkr1282) (PMID:22238376) (PMCID:PMC3351152)

This list was generated on Fri Jul 4 18:38:34 2025 BST.
Number of items: 26.

Articles

Samarakoon, Y. et al. (2025) UNC119 regulates T-cell receptor signalling in primary T cells and T acute lymphocytic leukaemia. Life Science Alliance, 8(3), e202403066. (doi: 10.26508/lsa.202403066) (PMID:39814552) (PMCID:PMC11735834)

Mahmood, M. et al. (2024) Mitochondrial DNA mutations drive aerobic glycolysis to enhance checkpoint blockade response in melanoma. Nature Cancer, (doi: 10.1038/s43018-023-00721-w) (PMID:38286828) (Early Online Publication)

Kim, Minsoo, Mahmood, Mahnoor, Reznik, Ed and Gammage, Payam A. ORCID logoORCID: https://orcid.org/0000-0003-1968-1726 (2022) Mitochondrial DNA is a major source of driver mutations in cancer. Trends in Cancer, 8(12), pp. 1046-1059. (doi: 10.1016/j.trecan.2022.08.001) (PMID:36041967) (PMCID:PMC9671861)

Ganly, I. et al. (2022) Mitonuclear genotype remodels the metabolic and microenvironmental landscape of Hürthle cell carcinoma. Science Advances, 8(25), eabn9699. (doi: 10.1126/sciadv.abn9699) (PMID:35731870) (PMCID:PMC9216518)

Rabas, N. et al. (2021) PINK1 drives production of mtDNA-containing extracellular vesicles to promote invasiveness. Journal of Cell Biology, 220(12), e202006049. (doi: 10.1083/jcb.202006049) (PMID:34623384) (PMCID:PMC8641410)

Gorelick, Alexander N., Kim, Minsoo, Chatila, Walid K., La, Konnor, Hakimi, A. Ari, Berger, Michael F., Taylor, Barry S., Gammage, Payam A. ORCID logoORCID: https://orcid.org/0000-0003-1968-1726 and Reznik, Ed (2021) Respiratory complex and tissue lineage drive recurrent mutations in tumour mtDNA. Nature Metabolism, 3(4), pp. 558-570. (doi: 10.1038/s42255-021-00378-8) (PMID:33833465) (PMCID:PMC9304985)

Andreazza, S. et al. (2019) Mitochondrially-targeted APOBEC1 is a potent mtDNA mutator affecting mitochondrial function and organismal fitness in Drosophila. Nature Communications, 10, 3280. (doi: 10.1038/s41467-019-10857-y) (PMID:31337756) (PMCID:PMC6650417)

Gammage, Payam A. ORCID logoORCID: https://orcid.org/0000-0003-1968-1726 and Frezza, Christian (2019) Mitochondrial DNA: the overlooked oncogenome? BMC Biology, 17(1), 53. (doi: 10.1186/s12915-019-0668-y) (PMID:31286943) (PMCID:PMC6615100)

Beard, Daniel A., Hoitzing, Hanne, Gammage, Payam A. ORCID logoORCID: https://orcid.org/0000-0003-1968-1726, Haute, Lindsey Van, Minczuk, Michal, Johnston, Iain G. and Jones, Nick S. (2019) Energetic costs of cellular and therapeutic control of stochastic mitochondrial DNA populations. PLoS Computational Biology, 15(6), e1007023. (doi: 10.1371/journal.pcbi.1007023) (PMID:31242175) (PMCID:PMC6615642)

Gammage, P. A. et al. (2018) Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nature Medicine, 24(11), pp. 1691-1695. (doi: 10.1038/s41591-018-0165-9) (PMID:30250142) (PMCID:PMC6225988)

Peeva, V. et al. (2018) Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nature Communications, 9, 1727. (doi: 10.1038/s41467-018-04131-w) (PMID:29712893) (PMCID:PMC5928156)

Gammage, Payam A. ORCID logoORCID: https://orcid.org/0000-0003-1968-1726, Moraes, Carlos T. and Minczuk, Michal (2018) Mitochondrial genome engineering: the revolution may not be CRISPR-ized. Trends in Genetics, 34(2), pp. 101-110. (doi: 10.1016/j.tig.2017.11.001) (PMID:29179920) (PMCID:PMC5783712)

Gaude, E. et al. (2018) NADH shuttling couples cytosolic reductive carboxylation of glutamine with glycolysis in cells with mitochondrial dysfunction. Molecular Cell, 69(4), 581-593.e7. (doi: 10.1016/j.molcel.2018.01.034) (PMID:29452638) (PMCID:PMC5823973)

Kullar, P. J. et al. (2018) Heterozygous SSBP1 start loss mutation co-segregates with hearing loss and the m.1555A>G mtDNA variant in a large multigenerational family. Brain, 141(1), pp. 55-62. (doi: 10.1093/brain/awx295) (PMID:29182774) (PMCID:PMC5837410)

Gammage, P. A. et al. (2016) Near-complete elimination of mutant mtDNA by iterative or dynamic dose-controlled treatment with mtZFNs. Nucleic Acids Research, 44(16), pp. 7804-7816. (doi: 10.1093/nar/gkw676) (PMID:27466392) (PMCID:PMC5027515)

Gammage, Payam A ORCID logoORCID: https://orcid.org/0000-0003-1968-1726, Rorbach, Joanna, Vincent, Anna I., Rebar, Edward J. and Minczuk, Michal (2014) Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large‐scale deletions or point mutations. EMBO Molecular Medicine, 6(4), pp. 458-466. (doi: 10.1002/emmm.201303672) (PMID:24567072) (PMCID:PMC3992073)

Rorbach, Joanna, Boesch, Pierre, Gammage, Payam A. ORCID logoORCID: https://orcid.org/0000-0003-1968-1726, Nicholls, Thomas J.J., Pearce, Sarah F., Patel, Dipali, Hauser, Andreas, Perocchi, Fabiana, Minczuk, Michal and Wolin, Sandra (2014) MRM2 and MRM3 are involved in biogenesis of the large subunit of the mitochondrial ribosome. Molecular Biology of the Cell, 25(17), pp. 2542-2555. (doi: 10.1091/mbc.e14-01-0014) (PMID:25009282) (PMCID:PMC4148245)

Kazak, Lawrence, Reyes, Aurelio, Duncan, Anna L., Rorbach, Joanna, Wood, Stuart R., Brea-Calvo, Gloria, Gammage, Payam A. ORCID logoORCID: https://orcid.org/0000-0003-1968-1726, Robinson, Alan J., Minczuk, Michal and Holt, Ian J. (2013) Alternative translation initiation augments the human mitochondrial proteome. Nucleic Acids Research, 41(4), pp. 2354-2369. (doi: 10.1093/nar/gks1347) (PMID:23275553) (PMCID:PMC3575844)

Rorbach, Joanna, Gammage, Payam A. ORCID logoORCID: https://orcid.org/0000-0003-1968-1726 and Minczuk, Michal (2012) C7orf30 is necessary for biogenesis of the large subunit of the mitochondrial ribosome. Nucleic Acids Research, 40(9), pp. 4097-4109. (doi: 10.1093/nar/gkr1282) (PMID:22238376) (PMCID:PMC3351152)

Book Sections

Shaw, Andrew M. and Gammage, Payam A. ORCID logoORCID: https://orcid.org/0000-0003-1968-1726 (2023) Coupling Differential Centrifugation with Exonuclease Treatment and Size Exclusion Chromatography (DIFSEC) for purification of mtDNA from mammalian cells. In: Mitochondrial DNA: Methods and Protocols. Series: Methods in molecular biology (2615). Springer: New York, pp. 31-40. ISBN 9781071629215

Bacman, Sandra R., Gammage, P.A. ORCID logoORCID: https://orcid.org/0000-0003-1968-1726, Minczuk, M. and Moraes, C.T. (2020) Manipulation of mitochondrial genes and mtDNA heteroplasmy. In: Pon, Liza A. and Schon, Eric A. (eds.) Mitochondira. 3rd Edition. Series: Methods in cell biology. Academic Press: Amsterdam, pp. 441-487. ISBN 9780128202289 (doi: 10.1016/bs.mcb.2019.12.004)

Gammage, Payam A. ORCID logoORCID: https://orcid.org/0000-0003-1968-1726 and Minczuk, Michal (2018) Enhanced manipulation of human mitochondrial DNA heteroplasmy in vitro using tunable mtZFN technology. In: Liu, Jia (ed.) Zinc Finger Proteins. Series: Methods in molecular biology (1867). Humana Press: New York, pp. 43-56. ISBN 9781493987986 (doi: 10.1007/978-1-4939-8799-3_4)

McCann, Beverly J., Cox, Andy, Gammage, Payam A. ORCID logoORCID: https://orcid.org/0000-0003-1968-1726, Stewart, James B., Zernicka-Goetz, Magdalena and Minczuk, Michal (2018) Delivery of mtZFNs into early mouse embryos. In: Liu, Jia (ed.) Zinc Finger Proteins. Series: Methods in molecular biology (1867). Humana Press: New York, pp. 215-228. (doi: 10.1007/978-1-4939-8799-3_16)

Gammage, Payam A. ORCID logoORCID: https://orcid.org/0000-0003-1968-1726, Van Haute, Lindsey and Minczuk, Michal (2016) Engineered mtZFNs for manipulation of human mitochondrial DNA heteroplasmy. In: Mitochondrial DNA. Series: Methods in molecular biology, 1351 (1351). Humana Press: New York, pp. 145-162. ISBN 9781493930395 (doi: 10.1007/978-1-4939-3040-1_11)

Patents

Cancer Research Technology Ltd, Memorial Sloan Kettering Cancer Center (2022) Tumor Stratification. .

Cancer Research Technology Ltd (2022) Tumor Sensitation. .

This list was generated on Fri Jul 4 18:38:34 2025 BST.

Grants

Grants and Awards listed are those received whilst working with the University of Glasgow.

  • MODELMITO: Manipulating the mitochondrial genome to investigate the impact of mtDNA mutations in cancer
    EPSRC EU Guarantee
    2022 - 2027
     

Supervision