Publications

List by: Type | Date

Jump to: 2022 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2012
Number of items: 20.

2022

Osma, N. et al. (2022) Ocean acidification induces distinct metabolic responses in subtropical zooplankton under oligotrophic conditions and after simulated upwelling. Science of the Total Environment, 810, 152252. (doi: 10.1016/j.scitotenv.2021.152252) (PMID:34896493)

2020

Tames-Espinosa, M. et al. (2020) Metabolic responses of subtropical microplankton after a simulated deep-water upwelling event suggest a possible dominance of mixotrophy under increasing CO2 levels. Frontiers in Marine Science, 7, 307. (doi: 10.3389/fmars.2020.00307)

2019

Bach, L. T., Stange, P., Taucher, J., Achterberg, E. P., Algueró‐Muñiz, M. , Horn, H., Esposito, M. and Riebesell, U. (2019) The influence of plankton community structure on sinking velocity and remineralization rate of marine aggregates. Global Biogeochemical Cycles, 33(8), pp. 971-994. (doi: 10.1029/2019GB006256)

Algueró-Muñiz, M. , Horn, H. G., Alvarez-Fernandez, S., Spisla, C., Aberle, N., Bach, L. T., Guan, W., Achterberg, E. P., Riebesell, U. and Boersma, M. (2019) Analyzing the impacts of elevated-CO2 levels on the development of a subtropical zooplankton community during oligotrophic conditions and simulated upwelling. Frontiers in Marine Science, 6, 61. (doi: 10.3389/fmars.2019.00061)

2018

Riebesell, U. et al. (2018) Toxic algal bloom induced by ocean acidification disrupts the pelagic food web. Nature Climate Change, 8(12), pp. 1082-1086. (doi: 10.1038/s41558-018-0344-1)

Boxhammer, T. et al. (2018) Enhanced transfer of organic matter to higher trophic levels caused by ocean acidification and its implications for export production: a mass balance approach. PLoS ONE, 13(5), e0197502. (doi: 10.1371/journal.pone.0197502) (PMID:29799856) (PMCID:PMC5969766)

Sswat, M., Stiasny, M. H., Taucher, J., Algueró-Muñiz, M. , Bach, L. T., Jutfelt, F., Riebesell, U. and Clemmesen, C. (2018) Food web changes under ocean acidification promote herring larvae survival. Nature Ecology and Evolution, 2, pp. 836-840. (doi: 10.1038/s41559-018-0514-6) (PMID:29556079)

Taucher, J., Stange, P., Algueró-Muñiz, M. , Bach, L. T., Nauendorf, A., Kolzenburg, R., Büdenbender, J. and Riebesell, U. (2018) In situ camera observations reveal major role of zooplankton in modulating marine snow formation during an upwelling-induced plankton bloom. Progress in Oceanography, 164, pp. 75-88. (doi: 10.1016/j.pocean.2018.01.004)

Amorim, K., Mattmüller, R. M., Algueró-Muñiz, M. , Meunier, C. L., Alvarez-Fernandez, S., Boersma, M., Morais, P. and Teodósio, M. A. (2018) Winter river discharge may affect summer estuarine jellyfish blooms. Marine Ecology Progress Series, 591, pp. 253-265. (doi: 10.3354/meps12356)

Stange, P., Taucher, J., Bach, L. T., Algueró-Muñiz, M. , Horn, H. G., Krebs, L., Boxhammer, T., Nauendorf, A. K. and Riebesell, U. (2018) Ocean acidification-induced restructuring of the plankton food web can influence the degradation of sinking particles. Frontiers in Marine Science, 5, 140. (doi: 10.3389/fmars.2018.00140)

2017

Langer, J. A. F. et al. (2017) Community barcoding reveals little effect of ocean acidification on the composition of coastal plankton communities: evidence from a long-term mesocosm study in the Gullmar Fjord, Skagerrak. PLoS ONE, 12(4), e0175808. (doi: 10.1371/journal.pone.0175808) (PMID:28445483) (PMCID:PMC5405915)

Algueró-Muñiz, M. et al. (2017) Ocean acidification effects on mesozooplankton community development: results from a long-term mesocosm experiment. PLoS ONE, 12(4), e0175851. (doi: 10.1371/journal.pone.0175851) (PMID:28410436) (PMCID:PMC5391960)

Taucher, J. et al. (2017) Influence of ocean acidification and deep water upwelling on oligotrophic plankton communities in the subtropical North Atlantic: insights from an in situ mesocosm study. Frontiers in Marine Science, 4, 85. (doi: 10.3389/fmars.2017.00085)

Meunier, C. L., Algueró-Muñiz, M. , Horn, H. G., Lange, J. A.F. and Boersma, M. (2017) Direct and indirect effects of near-future pCO2 levels on zooplankton dynamics. Marine and Freshwater Research, 68(2), pp. 373-380. (doi: 10.1071/mf15296)

Taucher, J., Haunost, M., Boxhammer, T., Bach, L. T., Algueró-Muñiz, M. and Riebesell, U. (2017) Influence of ocean acidification on plankton community structure during a winter-to-summer succession: An imaging approach indicates that copepods can benefit from elevated CO2 via indirect food web effects. PLoS ONE, 12(2), e0169737. (doi: 10.1371/journal.pone.0169737) (PMID:28178268) (PMCID:PMC5298333)

2016

Algueró‑Muñiz, M. , Meunier, C. L., Holst, S., Alvarez‑Fernandez, S. and Boersma, M. (2016) Withstanding multiple stressors: ephyrae of the moon jellyfish (Aurelia aurita, Scyphozoa) in a high-temperature, high-CO2 and low-oxygen environment. Marine Biology, 163, 185. (doi: 10.1007/s00227-016-2958-z)

Bach, L. T. et al. (2016) Influence of ocean acidification on a natural winter-to-summer plankton succession: first insights from a long-term mesocosm study draw attention to periods of low nutrient concentrations. PLoS ONE, 11(8), e0159068. (doi: 10.1371/journal.pone.0159068) (PMID:27525979) (PMCID:PMC4985126)

Horn, H. G., Sander, N., Stuhr, A., Algueró-Muñiz, M. , Bach, L. T., Löder, M. G. J., Boersma, M., Riebesell, U. and Aberle, N. (2016) Low CO2 sensitivity of microzooplankton communities in the Gullmar Fjord, Skagerrak: evidence from a long-term mesocosm study. PLoS ONE, 11(11), e0165800. (doi: 10.1371/journal.pone.0165800) (PMID:27893740) (PMCID:PMC5125589)

2015

Lesniowski, T. J., Gambill, M., Holst, S., Peck, M. A., Algueró-Muñiz, M. , Haunost, M., Malzahn, A. M. and Boersma, M. (2015) Effects of food and CO2 on growth dynamics of polyps of two scyphozoan species (Cyanea capillata and Chrysaora hysoscella). Marine Biology, 162(6), pp. 1371-1382. (doi: 10.1007/s00227-015-2660-6)

2012

Fuentes, V., Algueró Muñiz, M. , Lindsay, D., Isla, E. and Gili, J.-M. (2012) Amphinema gordini sp. nov., a new benthopelagic medusa (Cnidaria:Hydrozoa:Anthomedusae:Pandeidae) collected by sediment traps off the northern Chilean coast. Marine Biodiversity, 42(2), pp. 217-224. (doi: 10.1007/s12526-011-0108-x)

This list was generated on Thu Apr 25 15:32:57 2024 BST.
Jump to: Articles
Number of items: 20.

Articles

Osma, N. et al. (2022) Ocean acidification induces distinct metabolic responses in subtropical zooplankton under oligotrophic conditions and after simulated upwelling. Science of the Total Environment, 810, 152252. (doi: 10.1016/j.scitotenv.2021.152252) (PMID:34896493)

Tames-Espinosa, M. et al. (2020) Metabolic responses of subtropical microplankton after a simulated deep-water upwelling event suggest a possible dominance of mixotrophy under increasing CO2 levels. Frontiers in Marine Science, 7, 307. (doi: 10.3389/fmars.2020.00307)

Bach, L. T., Stange, P., Taucher, J., Achterberg, E. P., Algueró‐Muñiz, M. , Horn, H., Esposito, M. and Riebesell, U. (2019) The influence of plankton community structure on sinking velocity and remineralization rate of marine aggregates. Global Biogeochemical Cycles, 33(8), pp. 971-994. (doi: 10.1029/2019GB006256)

Algueró-Muñiz, M. , Horn, H. G., Alvarez-Fernandez, S., Spisla, C., Aberle, N., Bach, L. T., Guan, W., Achterberg, E. P., Riebesell, U. and Boersma, M. (2019) Analyzing the impacts of elevated-CO2 levels on the development of a subtropical zooplankton community during oligotrophic conditions and simulated upwelling. Frontiers in Marine Science, 6, 61. (doi: 10.3389/fmars.2019.00061)

Riebesell, U. et al. (2018) Toxic algal bloom induced by ocean acidification disrupts the pelagic food web. Nature Climate Change, 8(12), pp. 1082-1086. (doi: 10.1038/s41558-018-0344-1)

Boxhammer, T. et al. (2018) Enhanced transfer of organic matter to higher trophic levels caused by ocean acidification and its implications for export production: a mass balance approach. PLoS ONE, 13(5), e0197502. (doi: 10.1371/journal.pone.0197502) (PMID:29799856) (PMCID:PMC5969766)

Sswat, M., Stiasny, M. H., Taucher, J., Algueró-Muñiz, M. , Bach, L. T., Jutfelt, F., Riebesell, U. and Clemmesen, C. (2018) Food web changes under ocean acidification promote herring larvae survival. Nature Ecology and Evolution, 2, pp. 836-840. (doi: 10.1038/s41559-018-0514-6) (PMID:29556079)

Taucher, J., Stange, P., Algueró-Muñiz, M. , Bach, L. T., Nauendorf, A., Kolzenburg, R., Büdenbender, J. and Riebesell, U. (2018) In situ camera observations reveal major role of zooplankton in modulating marine snow formation during an upwelling-induced plankton bloom. Progress in Oceanography, 164, pp. 75-88. (doi: 10.1016/j.pocean.2018.01.004)

Amorim, K., Mattmüller, R. M., Algueró-Muñiz, M. , Meunier, C. L., Alvarez-Fernandez, S., Boersma, M., Morais, P. and Teodósio, M. A. (2018) Winter river discharge may affect summer estuarine jellyfish blooms. Marine Ecology Progress Series, 591, pp. 253-265. (doi: 10.3354/meps12356)

Stange, P., Taucher, J., Bach, L. T., Algueró-Muñiz, M. , Horn, H. G., Krebs, L., Boxhammer, T., Nauendorf, A. K. and Riebesell, U. (2018) Ocean acidification-induced restructuring of the plankton food web can influence the degradation of sinking particles. Frontiers in Marine Science, 5, 140. (doi: 10.3389/fmars.2018.00140)

Langer, J. A. F. et al. (2017) Community barcoding reveals little effect of ocean acidification on the composition of coastal plankton communities: evidence from a long-term mesocosm study in the Gullmar Fjord, Skagerrak. PLoS ONE, 12(4), e0175808. (doi: 10.1371/journal.pone.0175808) (PMID:28445483) (PMCID:PMC5405915)

Algueró-Muñiz, M. et al. (2017) Ocean acidification effects on mesozooplankton community development: results from a long-term mesocosm experiment. PLoS ONE, 12(4), e0175851. (doi: 10.1371/journal.pone.0175851) (PMID:28410436) (PMCID:PMC5391960)

Taucher, J. et al. (2017) Influence of ocean acidification and deep water upwelling on oligotrophic plankton communities in the subtropical North Atlantic: insights from an in situ mesocosm study. Frontiers in Marine Science, 4, 85. (doi: 10.3389/fmars.2017.00085)

Meunier, C. L., Algueró-Muñiz, M. , Horn, H. G., Lange, J. A.F. and Boersma, M. (2017) Direct and indirect effects of near-future pCO2 levels on zooplankton dynamics. Marine and Freshwater Research, 68(2), pp. 373-380. (doi: 10.1071/mf15296)

Taucher, J., Haunost, M., Boxhammer, T., Bach, L. T., Algueró-Muñiz, M. and Riebesell, U. (2017) Influence of ocean acidification on plankton community structure during a winter-to-summer succession: An imaging approach indicates that copepods can benefit from elevated CO2 via indirect food web effects. PLoS ONE, 12(2), e0169737. (doi: 10.1371/journal.pone.0169737) (PMID:28178268) (PMCID:PMC5298333)

Algueró‑Muñiz, M. , Meunier, C. L., Holst, S., Alvarez‑Fernandez, S. and Boersma, M. (2016) Withstanding multiple stressors: ephyrae of the moon jellyfish (Aurelia aurita, Scyphozoa) in a high-temperature, high-CO2 and low-oxygen environment. Marine Biology, 163, 185. (doi: 10.1007/s00227-016-2958-z)

Bach, L. T. et al. (2016) Influence of ocean acidification on a natural winter-to-summer plankton succession: first insights from a long-term mesocosm study draw attention to periods of low nutrient concentrations. PLoS ONE, 11(8), e0159068. (doi: 10.1371/journal.pone.0159068) (PMID:27525979) (PMCID:PMC4985126)

Horn, H. G., Sander, N., Stuhr, A., Algueró-Muñiz, M. , Bach, L. T., Löder, M. G. J., Boersma, M., Riebesell, U. and Aberle, N. (2016) Low CO2 sensitivity of microzooplankton communities in the Gullmar Fjord, Skagerrak: evidence from a long-term mesocosm study. PLoS ONE, 11(11), e0165800. (doi: 10.1371/journal.pone.0165800) (PMID:27893740) (PMCID:PMC5125589)

Lesniowski, T. J., Gambill, M., Holst, S., Peck, M. A., Algueró-Muñiz, M. , Haunost, M., Malzahn, A. M. and Boersma, M. (2015) Effects of food and CO2 on growth dynamics of polyps of two scyphozoan species (Cyanea capillata and Chrysaora hysoscella). Marine Biology, 162(6), pp. 1371-1382. (doi: 10.1007/s00227-015-2660-6)

Fuentes, V., Algueró Muñiz, M. , Lindsay, D., Isla, E. and Gili, J.-M. (2012) Amphinema gordini sp. nov., a new benthopelagic medusa (Cnidaria:Hydrozoa:Anthomedusae:Pandeidae) collected by sediment traps off the northern Chilean coast. Marine Biodiversity, 42(2), pp. 217-224. (doi: 10.1007/s12526-011-0108-x)

This list was generated on Thu Apr 25 15:32:57 2024 BST.