Number of items: 20.
2020
Prihandoko, R. et al.
(2020)
Pathophysiological regulation of lung function by the free fatty acid receptor FFA4.
Science Translational Medicine, 12(557),
eaaw9009.
(doi: 10.1126/scitranslmed.aaw9009)
(PMID:32817367)
2018
Marsango, Sara, Ward, Richard J., Alvarez-Curto, Elisa
ORCID: https://orcid.org/0000-0003-4004-4545 and Milligan, Graeme
ORCID: https://orcid.org/0000-0002-6946-3519
(2018)
Muscarinic receptor oligomerization.
Neuropharmacology, 136(Part C),
pp. 401-410.
(doi: 10.1016/j.neuropharm.2017.11.023)
(PMID:29146505)
(PMCID:PMC6078712)
2017
Viskaitis, P. et al.
(2017)
Modulation of SF1 neuron activity coordinately regulates both feeding behaviour and associated emotional states.
Cell Reports, 21(12),
pp. 3559-3572.
(doi: 10.1016/j.celrep.2017.11.089)
(PMID:29262334)
(PMCID:PMC5746599)
Milligan, Graeme
ORCID: https://orcid.org/0000-0002-6946-3519, Alvarez-Curto, Elisa
ORCID: https://orcid.org/0000-0003-4004-4545, Hudson, Brian D.
ORCID: https://orcid.org/0000-0001-7059-0091, Prihandoko, Rudi and Tobin, Andrew B.
ORCID: https://orcid.org/0000-0002-1807-3123
(2017)
FFA4/GPR120: pharmacology and therapeutic opportunities.
Trends in Pharmacological Sciences, 38(9),
pp. 809-821.
(doi: 10.1016/j.tips.2017.06.006)
(PMID:28734639)
(PMCID:PMC5582618)
Lopez-Gimenez, Juan, Alvarez-Curto, Elisa
ORCID: https://orcid.org/0000-0003-4004-4545 and Milligan, Graeme
ORCID: https://orcid.org/0000-0002-6946-3519
(2017)
M3 muscarinic acetylcholine receptor facilitates the endocytosis of mu opioid receptor mediated by morphine independently of the formation of heteromeric complexes.
Cellular Signalling, 35,
pp. 208-222.
(doi: 10.1016/j.cellsig.2017.04.006)
(PMID:28411124)
Watterson, K. R. et al.
(2017)
Probe-dependent negative allosteric modulators of the long-chain free fatty acid receptor FFA4.
Molecular Pharmacology, 91(6),
pp. 630-641.
(doi: 10.1124/mol.116.107821)
(PMID:28385906)
(PMCID:PMC5438128)
2016
Alvarez-Curto, Elisa
ORCID: https://orcid.org/0000-0003-4004-4545, Inoue, Asuka, Jenkins, Laura
ORCID: https://orcid.org/0000-0003-1382-8547, Raihan, Sheikh Zahir, Prihandoko, Rudi, Tobin, Andrew B.
ORCID: https://orcid.org/0000-0002-1807-3123 and Milligan, Graeme
ORCID: https://orcid.org/0000-0002-6946-3519
(2016)
Targeted elimination of G proteins and arrestins defines their specific contributions to both intensity and duration of G protein-coupled receptor signalling.
Journal of Biological Chemistry, 291(53),
pp. 27147-27159.
(doi: 10.1074/jbc.M116.754887)
(PMID:27852822)
(PMCID:PMC5207144)
Alvarez-Curto, Elisa
ORCID: https://orcid.org/0000-0003-4004-4545 and Milligan, Graeme
ORCID: https://orcid.org/0000-0002-6946-3519
(2016)
Metabolism meets immunity: the role of free fatty acid receptors in the immune system.
Biochemical Pharmacology, 114,
pp. 3-13.
(doi: 10.1016/j.bcp.2016.03.017)
(PMID:27002183)
Prihandoko, Rudi, Alvarez-Curto, Elisa
ORCID: https://orcid.org/0000-0003-4004-4545, Hudson, Brian D.
ORCID: https://orcid.org/0000-0001-7059-0091, Butcher, Adrian J., Ulven, Trond, Miller, Ashley M., Tobin, Andrew B.
ORCID: https://orcid.org/0000-0002-1807-3123 and Milligan, Graeme
ORCID: https://orcid.org/0000-0002-6946-3519
(2016)
Distinct phosphorylation clusters determines the signalling outcome of the free fatty acid receptor FFA4/GPR120.
Molecular Pharmacology, 89(5),
pp. 505-520.
(doi: 10.1124/mol.115.101949)
(PMID:26873857)
2015
Milligan, G.
ORCID: https://orcid.org/0000-0002-6946-3519, Alvarez-Curto, E.
ORCID: https://orcid.org/0000-0003-4004-4545, Watterson, K.R.
ORCID: https://orcid.org/0000-0003-3819-4026, Ulven, T. and Hudson, B.D.
ORCID: https://orcid.org/0000-0001-7059-0091
(2015)
Characterizing pharmacological ligands to study the long-chain fatty acid receptors GPR40/FFA1 and GPR120/FFA4.
British Journal of Pharmacology, 172(13),
pp. 3254-3265.
(doi: 10.1111/bph.12879)
(PMID:25131623)
Aslanoglou, Despoina, Alvarez-Curto, Elisa
ORCID: https://orcid.org/0000-0003-4004-4545, Marsango, Sara and Milligan, Graeme
ORCID: https://orcid.org/0000-0002-6946-3519
(2015)
Distinct agonist regulation of muscarinic acetylcholine M2-M3 heteromers and their corresponding homomers.
Journal of Biological Chemistry, 290(23),
pp. 14785-14796.
(doi: 10.1074/jbc.M115.649079)
(PMID:25918156)
(PMCID:PMC4505543)
Liste, Maria J., Caltabiano, Gianluigi, Ward, Richard J., Alvarez-Curto, Elisa
ORCID: https://orcid.org/0000-0003-4004-4545, Marsango, Sara and Milligan, Graeme
ORCID: https://orcid.org/0000-0002-6946-3519
(2015)
The molecular basis of oligomeric organization of the human m3 muscarinic acetylcholine receptor.
Molecular Pharmacology, 87(6),
pp. 936-953.
(doi: 10.1124/mol.114.096925)
(PMID:25769304)
Alvarez-Curto, Elisa
ORCID: https://orcid.org/0000-0003-4004-4545 and Milligan, Graeme
ORCID: https://orcid.org/0000-0002-6946-3519
(2015)
Defining the functional equivalence of wild-type and chemically engineered G protein-coupled receptors.
In: Thiel, Gerald (ed.)
Designer Receptors Exclusively Activated by Designer Drugs.
Series: Neuromethods (108).
Springer New York, pp. 1-28.
ISBN 9781493929436
(doi: 10.1007/978-1-4939-2944-3_1)
2014
Butcher, Adrian J., Hudson, Brian D.
ORCID: https://orcid.org/0000-0001-7059-0091, Shimpukade, Bharat, Alvarez-Curto, Elisa
ORCID: https://orcid.org/0000-0003-4004-4545, Prihandoko, Rudi, Ulven, Trond, Milligan, Graeme
ORCID: https://orcid.org/0000-0002-6946-3519 and Tobin, Andrew B.
ORCID: https://orcid.org/0000-0002-1807-3123
(2014)
Concomitant action of structural elements and receptor phosphorylation determine arrestin-3 interaction with the free fatty acid receptor FFA4.
Journal of Biological Chemistry, 289,
pp. 18451-18465.
(doi: 10.1074/jbc.M114.568816)
(PMID:24817122)
(PMCID:PMC4140278)
2013
Patowary, S., Alvarez-Curto, E.
ORCID: https://orcid.org/0000-0003-4004-4545, Xu, T.-R., Holz, J.D., Oliver, J.A., Milligan, Graeme
ORCID: https://orcid.org/0000-0002-6946-3519 and Raicu, V.
(2013)
The muscarinic M3acetylcholine receptor exists as two differently sized complexes at the plasma membrane.
Biochemical Journal, 452(2),
pp. 303-312.
(doi: 10.1042/BJ20121902)
(PMID:23521066)
2011
Alvarez-Curto, Elisa
ORCID: https://orcid.org/0000-0003-4004-4545, Prihandoko, Rudi, Tautermann, Christofer S., Zwier, Jurriaan M., Pediani, John D.
ORCID: https://orcid.org/0000-0001-6615-537X, Lohse, Martin J., Hoffmann, Carsten, Tobin, Andrew B. and Milligan, Graeme
ORCID: https://orcid.org/0000-0002-6946-3519
(2011)
Developing chemical genetic approaches to explore G protein-coupled receptor function: validation of the use of a Receptor Activated Solely by Synthetic Ligand (RASSL).
Molecular Pharmacology, 80(6),
pp. 1033-1046.
(doi: 10.1124/mol.111.074674)
(PMID:21880827)
(PMCID:PMC3228535)
Ward, R.J., Alvarez-Curto, E.
ORCID: https://orcid.org/0000-0003-4004-4545 and Milligan, G
ORCID: https://orcid.org/0000-0002-6946-3519
(2011)
Using the Flp-In™ T-Rex™ System to Regulate GPCR Expression.
Methods in Molecular Biology, 746,
pp. 21-37.
(doi: 10.1007/978-1-61779-126-0_2)
2010
Alvarez-Curto, Elisa
ORCID: https://orcid.org/0000-0003-4004-4545, Pediani, John D.
ORCID: https://orcid.org/0000-0001-6615-537X and Milligan, Graeme
ORCID: https://orcid.org/0000-0002-6946-3519
(2010)
Applications of fluorescence and bioluminescence resonance energy transfer to drug discovery at G protein coupled receptors.
Analytical and Bioanalytical Chemistry, 398(1),
pp. 167-180.
(doi: 10.1007/s00216-010-3823-4)
(PMID:20517598)
Alvarez-Curto, Elisa, Ward, Richard J., Pediani, John D. and Milligan, Graeme
(2010)
Ligand regulation of the quaternary organization of cell surface M3 muscarinic acetylcholine receptors analyzed by fluorescence resonance energy transfer (FRET) imaging and homogenous time-resolved FRET.
Journal of Biological Chemistry, 285(30),
pp. 23318-23330.
(doi: 10.1074/jbc.M110.122184)
(PMID:20489201)
(PMCID:PMC2906324)
Jenkins, L.
ORCID: https://orcid.org/0000-0003-1382-8547, Alvarez-Curto, E.
ORCID: https://orcid.org/0000-0003-4004-4545, Campbell, Kate, De Munnik, Sabrina, Canals Buj, M., Schlyer, Sabine and Milligan, G.
ORCID: https://orcid.org/0000-0002-6946-3519
(2010)
Agonist activation of the G protein-coupled receptor GPR35 involves transmembrane domain III and is transduced via Gα13 and β-arrestin-2.
British Journal of Pharmacology, 162(3),
pp. 733-748.
(doi: 10.1111/j.1476-5381.2010.01082.x)
This list was generated on Sun Jun 15 15:45:15 2025 BST.