Space & Exploration Technology
Pioneering the technologies that will shape future space missions and exploration
Staff
The Space & Exploration Technology research cluster brings together expertise in access to space, in-orbit systems, and planetary exploration technologies. Our work supports the design and delivery of future missions through a combination of simulation, laboratory-scale demonstration, and terrestrial analogue testing.
Centred around the Integrated Space and Exploration Technologies Laboratory (I-SET), the cluster has access to advanced facilities including an air-bearing platform, Helmholtz coil system, vacuum chamber, cleanroom space, and 3D printing. A newly installed ESA-funded space environment chamber enables critical research on rocket plume-regolith interaction for lunar, Mars, and asteroid exploration.
This cluster connects interdisciplinary research across the James Watt School of Engineering and welcomes collaboration with academic, commercial, and space agency partners.
Research divisions
Our facilities
Explore the facilities we use to advance our research:
PhD opportunities
Find out more about related PhD opportunities:
News and events
Read our latest news and find out about upcoming events:
Researchers
Research Assistants |
PhD candidates |
Visitors |
|---|---|---|
| Dr James Beeley | Luca Löttgen | Emanuele Borghi |
| Dr Litesh Sulbhewar | Christopher Teale | |
| Dr Iain Moore | Majid Alhajeri | |
| Satyam Bhatti | Jack Tufft | |
| Vaibhav Somaji Anuse | Zitong Lin | |
| Khaldon Al-Areqi | Claudia Jimenez Cuesta | |
| Robbie Gordon | Matthew Deans | |
| Jonathan Draper | Edward Tomanek-Volynets | |
| Jack Davies | ||
| Abdullah Akdogan | ||
| Miguel Rosa Morales | ||
| Fabienne Seibert |
Selected publications
Arnot, C.S., McInnes, C.R. ORCID: https://orcid.org/0000-0003-0988-8854, McKay, R.J., Macdonald, M. and Biggs, J.
(2018)
Orbit period modulation for relative motion using continuous low thrust in the two-body and restricted three-body problems.
Celestial Mechanics and Dynamical Astronomy, 130,
12.
(doi: 10.1007/s10569-017-9807-3)
Tan, Minghu, McInnes, Colin ORCID: https://orcid.org/0000-0003-0988-8854 and Ceriotti, Matteo
ORCID: https://orcid.org/0000-0001-6819-7178
(2017)
Direct and indirect capture of near-Earth asteroids in the Earth-Moon system.
Celestial Mechanics and Dynamical Astronomy, 129(1-2),
pp. 57-88.
(doi: 10.1007/s10569-017-9764-x)
Peloni, Alessandro ORCID: https://orcid.org/0000-0002-1903-9816, Dachwald, Bernd and Ceriotti, Matteo
ORCID: https://orcid.org/0000-0001-6819-7178
(2018)
Multiple near-earth asteroid rendezvous mission: solar-sailing options.
Advances in Space Research, 62(8),
pp. 2084-2098.
(doi: 10.1016/j.asr.2017.10.017)
Budzyń, D. H. ORCID: https://orcid.org/0000-0002-0824-1947, Zare-Behtash, H.
ORCID: https://orcid.org/0000-0002-4769-4076, Cowley, A. and Cammarano, A.
ORCID: https://orcid.org/0000-0002-8222-8150
(2023)
Compliant Mechanisms for Dust Mitigation in Lunar Hardware Development: Technology and Material Considerations.
In: Materials in the Space Environment (ISMSE-15 and ICPMSE-13), Leiden, The Netherlands, 18-23 Sep 2022,
012001.
(doi: 10.1088/1757-899X/1287/1/012001)
Sullo, Nicola ORCID: https://orcid.org/0000-0002-2835-317X, Peloni, Alessandro
ORCID: https://orcid.org/0000-0002-1903-9816 and Ceriotti, Matteo
ORCID: https://orcid.org/0000-0001-6819-7178
(2017)
Low-thrust to solar-sail trajectories: a homotopic approach.
Journal of Guidance, Control, and Dynamics, 40(11),
pp. 2796-2806.
(doi: 10.2514/1.g002552)
McInnes, Colin R. ORCID: https://orcid.org/0000-0003-0988-8854
(2016)
A continuum model for the orbit evolution of self-propelled 'smart dust' swarms.
Celestial Mechanics and Dynamical Astronomy, 126(4),
pp. 501-517.
(doi: 10.1007/s10569-016-9707-y)
Budzyń, Dorota ORCID: https://orcid.org/0000-0002-0824-1947, Tuohy, Eóin, Garrivier, Natan, Schild, Timon, Cowley, Aidan, Cruise, Reuben, Adachi, Masato, Zare-Behtash, Hossein
ORCID: https://orcid.org/0000-0002-4769-4076 and Cammarano, Andrea
ORCID: https://orcid.org/0000-0002-8222-8150
(2022)
Lunar Dust: Its Impact on Hardware and Mitigation Technologies.
In: 46th Aerospace Mechanisms Symposium, Houston, TX, USA, 11-13 May 2022,
(In Press)
Budzyń, Dorota ORCID: https://orcid.org/0000-0002-0824-1947, Zare-Behtash, Hossein
ORCID: https://orcid.org/0000-0002-4769-4076, Cowley, Aidan and Cammarano, Andrea
ORCID: https://orcid.org/0000-0002-8222-8150
(2023)
Implicit lunar dust mitigation technology: compliant mechanisms.
Acta Astronautica, 203,
pp. 146-156.
(doi: 10.1016/j.actaastro.2022.11.042)
Snodgrass, C. et al. (2018) The Castalia mission to Main Belt Comet 133P/Elst-Pizarro. Advances in Space Research, 62(8), pp. 1947-1976. (doi: 10.1016/j.asr.2017.09.011)
Felicetti, Leonard, Ceriotti, Matteo ORCID: https://orcid.org/0000-0001-6819-7178 and Harkness, Patrick
ORCID: https://orcid.org/0000-0002-9930-6012
(2016)
Attitude stability and altitude control of a variable-geometry Earth-orbiting solar sail.
Journal of Guidance, Control, and Dynamics, 39(9),
pp. 2112-2126.
(doi: 10.2514/1.G001833)
Yarr, Neil and Ceriotti, Matteo ORCID: https://orcid.org/0000-0001-6819-7178
(2018)
Optimization of intersatellite routing for real-time data download.
IEEE Transactions on Aerospace and Electronic Systems, 54(5),
pp. 2356-2369.
(doi: 10.1109/TAES.2018.2815880)
Viale, Andrea ORCID: https://orcid.org/0000-0002-4076-6284, McInnes, Colin
ORCID: https://orcid.org/0000-0003-0988-8854 and Ceriotti, Matteo
ORCID: https://orcid.org/0000-0001-6819-7178
(2018)
Analytical mechanics of asteroid disassembly using the Orbital Siphon effect.
Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 474(2220),
20180594.
(doi: 10.1098/rspa.2018.0594)
De Iuliis, Alessia, Ciampa, Francesco, Felicetti, Leonard and Ceriotti, Matteo ORCID: https://orcid.org/0000-0001-6819-7178
(2021)
Sailing with solar and planetary radiation pressure.
Advances in Space Research, 67(9),
pp. 2795-2811.
(doi: 10.1016/j.asr.2019.11.036)
White, Craig ORCID: https://orcid.org/0000-0002-8208-5049, Zare-Behtash, Hossein
ORCID: https://orcid.org/0000-0002-4769-4076, Kontis, Konstantinos
ORCID: https://orcid.org/0000-0002-4984-9166, Ukai, Takahiro, Merrifield, Jim, Evans, David, Coxhill, Ian, Langener, Tobias and Van den Eynde, Jeroen
(2019)
Test Facility to Investigate Plume-Regolith Interactions.
International Conference on Flight Vehicles, Aerothermodynamics and Re-entry Missions and Engineering (FAR 2019), Monopoli, Italy, 30 Sept - 3 Oct 2019.
Sousa Silva, Priscilla, Terra, Maisa O. and Ceriotti, Matteo ORCID: https://orcid.org/0000-0001-6819-7178
(2018)
Fast Earth-Moon transfers with ballistic capture.
Astrophysics and Space Science, 363,
210.
(doi: 10.1007/s10509-018-3431-x)
Liu, Xiaoyu, McInnes, Colin ORCID: https://orcid.org/0000-0003-0988-8854 and Ceriotti, Matteo
ORCID: https://orcid.org/0000-0001-6819-7178
(2018)
Strategies to engineer the capture of a member of a binary asteroid pair using the planar parabolic restricted three-body problem.
Planetary and Space Science, 161,
pp. 5-25.
(doi: 10.1016/j.pss.2018.05.018)
Access to space
We create new rocket technologies and support skills development for the rocket propulsion industry.
Emerging space technologies
We work on technologies at extremes of spacecraft lenght-scale.
Landing on other worlds
We study atmospheric entry and plume-regolith interaction.
Orbital and attitude dynamics
We develop new methods to design attitude manoeuvres, orbits and transfers.
- Orbital and attitude dynamics
Surface and subsurface exploration
We work on new exploration technologies to allow for drilling in low gravity (asteroids, Moon and Mars).