Mrs Margaret Bell
- Technician (Veterinary Pathology, Public Health & Disease Investigation)
telephone:
01413303442
email:
Margaret.Bell@glasgow.ac.uk
R314 Level 3, School of Veterinary Medicine, Henry Wellcome ICM, Glasgow G61 1BD
Publications
2019
Loyola, L. et al. (2019) Disrupting MLV integrase:BET protein interaction biases integration into quiescent chromatin and delays but does not eliminate tumor activation in a MYC/Runx2 mouse model. PLoS Pathogens, 15(12), e1008154. (doi: 10.1371/journal.ppat.1008154) (PMID:31815961) (PMCID:PMC6974304)
2018
Anderson, G. et al. (2018) RUNX-mediated growth arrest and senescence are attenuated by diverse mechanisms in cells expressing RUNX1 fusion oncoproteins. Journal of Cellular Biochemistry, 119(3), pp. 2750-2762. (doi: 10.1002/jcb.26443) (PMID:29052866) (PMCID:PMC5813226)
McCarroll, C. S. et al. (2018) Runx1 deficiency protects against adverse cardiac remodeling after myocardial infarction. Circulation, 137(1), pp. 57-70. (doi: 10.1161/CIRCULATIONAHA.117.028911) (PMID:29030345) (PMCID:PMC5757664)
2016
Borland, G. et al. (2016) Addiction to Runx1 is partially attenuated by loss of p53 in the Eμ-Myc lymphoma model. Oncotarget, 7(17), pp. 22973-22987. (doi: 10.18632/oncotarget.8554) (PMID:27056890) (PMCID:PMC5029604)
2015
Naseer, A. et al. (2015) Frequent infection of human cancer xenografts with murine endogenous retroviruses in vivo. Viruses, 7(4), pp. 2014-2029. (doi: 10.3390/v7042014) (PMID:25912714) (PMCID:PMC4411688)
2014
McDonald, L. et al. (2014) RUNX2 correlates with subtype-specific breast cancer in a human tissue microarray, and ectopic expression of Runx2 perturbs differentiation in the mouse mammary gland. Disease Models and Mechanisms, 7(5), pp. 525-534. (doi: 10.1242/dmm.015040)
Huser, C. A. et al. (2014) Insertional mutagenesis and deep profiling reveals gene hierarchies and a Myc/p53-dependent bottleneck in lymphomagenesis. PLoS Genetics, 10(2), e1004167. (doi: 10.1371/journal.pgen.1004167) (PMID:24586197) (PMCID:PMC3937229)
2009
Blyth, K. ORCID: https://orcid.org/0000-0002-9304-439X, Slater, N., Hanlon, L., Bell, M., Mackay, N., Stewart, M., Neil, J.C.
ORCID: https://orcid.org/0000-0003-4447-8279 and Cameron, E.R.
ORCID: https://orcid.org/0000-0001-8311-1491
(2009)
Runx1 promotes B-cell survival and lymphoma development.
Blood Cells, Molecules, and Diseases, 43(1),
pp. 12-19.
(doi: 10.1016/j.bcmd.2009.01.013)
Scobie, L. et al. (2009) A novel model of SCID-X1 reconstitution reveals predisposition to retrovirus-induced lymphoma but no evidence of gammaC gene oncogenicity. Molecular Therapy, 17(6), pp. 1031-1038. (doi: 10.1038/mt.2009.59)
2007
Kilbey, A., Blyth, K. ORCID: https://orcid.org/0000-0002-9304-439X, Wotton, S., Terry, A., Jenkins, A., Bell, M., Hanlon, L., Cameron, E.R.
ORCID: https://orcid.org/0000-0001-8311-1491 and Neil, J.C.
ORCID: https://orcid.org/0000-0003-4447-8279
(2007)
Runx2 disruption promotes immortalization and confers resistance to oncogene-induced senescence in primary murine fibroblasts.
Cancer Research, 67(23),
pp. 11263-11271.
(doi: 10.1158/0008-5472.CAN-07-3016)
2006
Blyth, K. ORCID: https://orcid.org/0000-0002-9304-439X, Vaillant, F., Hanlon, L., Mackay, N., Bell, M., Jenkins, A., Neil, J.C.
ORCID: https://orcid.org/0000-0003-4447-8279 and Cameron, E.R.
ORCID: https://orcid.org/0000-0001-8311-1491
(2006)
Runx2 and MYC collaborate in lymphoma development by suppressing apoptotic and growth arrest pathways in vivo.
Cancer Research, 66(4),
pp. 2195-2201.
(doi: 10.1158/0008-5472.CAN-05-3558)
(PMID:16489021)
2001
Blyth, K. ORCID: https://orcid.org/0000-0002-9304-439X, Terry, A., Mackay, N., Vaillant, F., Bell, M., Cameron, E.R.
ORCID: https://orcid.org/0000-0001-8311-1491, Neil, J.C.
ORCID: https://orcid.org/0000-0003-4447-8279 and Stewart, M
(2001)
Runx2: A novel oncogenic effector revealed by in vivo complementation and retroviral tagging.
Oncogene, 20(3),
pp. 295-302.
(doi: 10.1038/sj.onc.1204090)
(PMID:11313958)
2000
Blyth, Karen ORCID: https://orcid.org/0000-0002-9304-439X, Stewart, Monica, Bell, Margaret, James, Clarwyn, Evan, Gerard, Neil, James C.
ORCID: https://orcid.org/0000-0003-4447-8279 and Cameron, Ewan R.
ORCID: https://orcid.org/0000-0001-8311-1491
(2000)
Sensitivity to myc-induced apoptosis is retained in spontaneous and transplanted lymphomas of CD2-mycERTM mice.
Oncogene, 19(6),
pp. 773-782.
(doi: 10.1038/sj.onc.1203321)
(PMID:10698495)
1999
Vaillant, François, Blyth, Karen ORCID: https://orcid.org/0000-0002-9304-439X, Terry, Anne, Bell, Margaret, Cameron, Ewan R.
ORCID: https://orcid.org/0000-0001-8311-1491, Neil, James
ORCID: https://orcid.org/0000-0003-4447-8279 and Stewart, Monica
(1999)
A full-length Cbfa1 gene product perturbs T-cell development and promotes lymphomagenesis in synergy with myc.
Oncogene, 18(50),
pp. 7124-7134.
(doi: 10.1038/sj.onc.1203202)
(PMID:10597314)
Articles
Loyola, L. et al. (2019) Disrupting MLV integrase:BET protein interaction biases integration into quiescent chromatin and delays but does not eliminate tumor activation in a MYC/Runx2 mouse model. PLoS Pathogens, 15(12), e1008154. (doi: 10.1371/journal.ppat.1008154) (PMID:31815961) (PMCID:PMC6974304)
Anderson, G. et al. (2018) RUNX-mediated growth arrest and senescence are attenuated by diverse mechanisms in cells expressing RUNX1 fusion oncoproteins. Journal of Cellular Biochemistry, 119(3), pp. 2750-2762. (doi: 10.1002/jcb.26443) (PMID:29052866) (PMCID:PMC5813226)
McCarroll, C. S. et al. (2018) Runx1 deficiency protects against adverse cardiac remodeling after myocardial infarction. Circulation, 137(1), pp. 57-70. (doi: 10.1161/CIRCULATIONAHA.117.028911) (PMID:29030345) (PMCID:PMC5757664)
Borland, G. et al. (2016) Addiction to Runx1 is partially attenuated by loss of p53 in the Eμ-Myc lymphoma model. Oncotarget, 7(17), pp. 22973-22987. (doi: 10.18632/oncotarget.8554) (PMID:27056890) (PMCID:PMC5029604)
Naseer, A. et al. (2015) Frequent infection of human cancer xenografts with murine endogenous retroviruses in vivo. Viruses, 7(4), pp. 2014-2029. (doi: 10.3390/v7042014) (PMID:25912714) (PMCID:PMC4411688)
McDonald, L. et al. (2014) RUNX2 correlates with subtype-specific breast cancer in a human tissue microarray, and ectopic expression of Runx2 perturbs differentiation in the mouse mammary gland. Disease Models and Mechanisms, 7(5), pp. 525-534. (doi: 10.1242/dmm.015040)
Huser, C. A. et al. (2014) Insertional mutagenesis and deep profiling reveals gene hierarchies and a Myc/p53-dependent bottleneck in lymphomagenesis. PLoS Genetics, 10(2), e1004167. (doi: 10.1371/journal.pgen.1004167) (PMID:24586197) (PMCID:PMC3937229)
Blyth, K. ORCID: https://orcid.org/0000-0002-9304-439X, Slater, N., Hanlon, L., Bell, M., Mackay, N., Stewart, M., Neil, J.C.
ORCID: https://orcid.org/0000-0003-4447-8279 and Cameron, E.R.
ORCID: https://orcid.org/0000-0001-8311-1491
(2009)
Runx1 promotes B-cell survival and lymphoma development.
Blood Cells, Molecules, and Diseases, 43(1),
pp. 12-19.
(doi: 10.1016/j.bcmd.2009.01.013)
Scobie, L. et al. (2009) A novel model of SCID-X1 reconstitution reveals predisposition to retrovirus-induced lymphoma but no evidence of gammaC gene oncogenicity. Molecular Therapy, 17(6), pp. 1031-1038. (doi: 10.1038/mt.2009.59)
Kilbey, A., Blyth, K. ORCID: https://orcid.org/0000-0002-9304-439X, Wotton, S., Terry, A., Jenkins, A., Bell, M., Hanlon, L., Cameron, E.R.
ORCID: https://orcid.org/0000-0001-8311-1491 and Neil, J.C.
ORCID: https://orcid.org/0000-0003-4447-8279
(2007)
Runx2 disruption promotes immortalization and confers resistance to oncogene-induced senescence in primary murine fibroblasts.
Cancer Research, 67(23),
pp. 11263-11271.
(doi: 10.1158/0008-5472.CAN-07-3016)
Blyth, K. ORCID: https://orcid.org/0000-0002-9304-439X, Vaillant, F., Hanlon, L., Mackay, N., Bell, M., Jenkins, A., Neil, J.C.
ORCID: https://orcid.org/0000-0003-4447-8279 and Cameron, E.R.
ORCID: https://orcid.org/0000-0001-8311-1491
(2006)
Runx2 and MYC collaborate in lymphoma development by suppressing apoptotic and growth arrest pathways in vivo.
Cancer Research, 66(4),
pp. 2195-2201.
(doi: 10.1158/0008-5472.CAN-05-3558)
(PMID:16489021)
Blyth, K. ORCID: https://orcid.org/0000-0002-9304-439X, Terry, A., Mackay, N., Vaillant, F., Bell, M., Cameron, E.R.
ORCID: https://orcid.org/0000-0001-8311-1491, Neil, J.C.
ORCID: https://orcid.org/0000-0003-4447-8279 and Stewart, M
(2001)
Runx2: A novel oncogenic effector revealed by in vivo complementation and retroviral tagging.
Oncogene, 20(3),
pp. 295-302.
(doi: 10.1038/sj.onc.1204090)
(PMID:11313958)
Blyth, Karen ORCID: https://orcid.org/0000-0002-9304-439X, Stewart, Monica, Bell, Margaret, James, Clarwyn, Evan, Gerard, Neil, James C.
ORCID: https://orcid.org/0000-0003-4447-8279 and Cameron, Ewan R.
ORCID: https://orcid.org/0000-0001-8311-1491
(2000)
Sensitivity to myc-induced apoptosis is retained in spontaneous and transplanted lymphomas of CD2-mycERTM mice.
Oncogene, 19(6),
pp. 773-782.
(doi: 10.1038/sj.onc.1203321)
(PMID:10698495)
Vaillant, François, Blyth, Karen ORCID: https://orcid.org/0000-0002-9304-439X, Terry, Anne, Bell, Margaret, Cameron, Ewan R.
ORCID: https://orcid.org/0000-0001-8311-1491, Neil, James
ORCID: https://orcid.org/0000-0003-4447-8279 and Stewart, Monica
(1999)
A full-length Cbfa1 gene product perturbs T-cell development and promotes lymphomagenesis in synergy with myc.
Oncogene, 18(50),
pp. 7124-7134.
(doi: 10.1038/sj.onc.1203202)
(PMID:10597314)