Statistics 1Z: Statistics in Action STATS1003

  • Academic Session: 2019-20
  • School: School of Mathematics and Statistics
  • Credits: 20
  • Level: Level 1 (SCQF level 7)
  • Typically Offered: Semester 2
  • Available to Visiting Students: Yes
  • Available to Erasmus Students: Yes
  • Taught Wholly by Distance Learning: Yes

Short Description

To teach students how to summarise patterns and relationships in data, and to use these simple statistical methods to answer real-world questions of interest in a series of case studies.

Timetable

Lectures: Monday, Tuesday, Wednesday and Thursday at 1.00 pm.

Computer labs: 4 two hour practicals, at times to be arranged.

Tutorials: Weekly for one hour at times to be arranged.

Requirements of Entry

Pass in SCE Higher Mathematics (or equivalent)

Excluded Courses


STATS1010 Statistics 1A: Applied Statistics

Co-requisites


STATS1002 Statistics 1Y: Probability and Statistical Methods

Assessment

Written examination (one two-hour paper) - 80%

Continuous assessment - 20%

Reassessment opportunities are not available for continuous assessment

Main Assessment In: April/May

Are reassessment opportunities available for all summative assessments? No

Reassessments are normally available for all courses, except those which contribute to the Honours classification. For non Honours courses, students are offered reassessment in all or any of the components of assessment if the satisfactory (threshold) grade for the overall course is not achieved at the first attempt. This is normally grade D3 for undergraduate students and grade C3 for postgraduate students. Exceptionally it may not be possible to offer reassessment of some coursework items, in which case the mark achieved at the first attempt will be counted towards the final course grade. Any such exceptions for this course are described below. 

Course Aims

The course aims to

 

enable students to apply correlation coefficients and simple linear regression models to quantify relationships in data;

enable students to use bivariate probability models to assess the dependence between two random variables;

demonstrate the importance and usefulness of statistical methods in real life via 3 case studies;

promote an interest in probability and statistics and hence encourage students to study the subject further.

Intended Learning Outcomes of Course

By the end of this course, students will be able to:

 

describe the difference between paired and independent data, and be able to recognise both in practice;

calculate and interpret the sample correlation coefficient between 2 variables;

fit a straight line using linear regression;

construct interval estimates and carry out hypothesis tests in the context of correlation and linear regression, and interpret their results correctly and in non-technical language;

carry out hypothesis tests for categorical data, and interpret their results;

recognise the importance of checking assumptions wherever possible;

explain how Statistics is used in different application areas;

outline statistical modelling strategies used in different application domains;

interpret the output of simple statistical models illustrating these modelling   strategies;

explain for some of these models how the calculations are performed;

perform these calculations for simple examples.

Minimum Requirement for Award of Credits

(i) attendance at the Degree (or resit) Examination;