

Programme Specification¹

1. Programme Title(s) and Code(s):

Programme Title	UCAS Code	GU Code
MEng Mechanical Engineering		H302-2204

2. Academic Session:

2018-19

3. SCQF Level (see Scottish Credit and Qualifications Framework Levels):

11

4. Credits:

600

5. Entrance Requirements:

Please refer to the current undergraduate prospectus at: http://www.gla.ac.uk/undergraduate/prospectus/

6. ATAS Certificate Requirement (see Academic Technology Approval Scheme):

ATAS Certificate not required

7. Attendance Type:

Full Time

8. Programme Aims:

Mechanical Engineering is arguably the broadest of main engineering disciplines. Modern mechanical products can incorporate mechanical, electrical and structural elements, requiring professional mechanical engineers to provide design and manufacturing expertise from a wide range of engineering disciplines. The degree programme at the University of Glasgow therefore provides a strong and broad academic engineering education balanced with practical experience to equip graduates with the range of skills a mechanical engineers needs in order to meet the present day challenges in a diverse range of career. Mechanical Engineering plays a vital role in manufacturing and in technological advancement. The Mechanical Engineering degree programme at the

¹ This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if full advantage is taken of the learning opportunities that are provided. More detailed information on the learning outcomes, content and teaching, learning and assessment methods of each course can be found in course handbooks and other programme documentation and online at www.gla.ac.uk/

The accuracy of the information in this document is reviewed periodically by the University and may be checked by the Quality Assurance Agency for Higher Education.

University of Glasgow provides the strong academic education needed to equip the graduate with the broad range of skills a mechanical engineer will need, both today and into the future, to meet the challenges of a diverse range of roles that might be taken, both at home and abroad. The engineering skills will be brought together via group design project in year 4 and individual industrial project in year 5. The degree matches the requirements for accreditation and is accredited by the Institution of Mechanical Engineers. The analytical and problem solving skills of the graduates are well-regarded by employers and researchers.

This degree programme aims to:

- present an integrated in depth multidisciplinary programme of study which will provide the student with knowledge and understanding of Mechanical Engineering;
- provide opportunities for the student to study in depth a choice of specialist topics within the field of Mechanical Engineering;
- provide an opportunity for students to develop transferable problem-solving skills in Mechanical Engineering in group and large scale individual project work;
- provide technical awareness in appropriate specialist applications of technology in the Mechanical Engineering field;
- develop the student's mathematical rigour, accuracy and numerate skills appropriate for professional engineering;
- present and develop professional, ethical, economic and management issues relevant to the Mechanical Engineering industry.

9. Intended Learning Outcomes of Programme:

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas.

Knowledge and Understanding:

Graduates will be able to:

- Use their knowledge and understanding of the appropriate mathematical, scientific and computational tools that underpin Mechanical Engineering, to solve, in depth, analytical, design or theoretical problems in the field of Mechanical Engineering;
- Apply their knowledge and understanding of physical laws, mathematics, numerical analysis and other relevant information in order to model Mechanical Engineering and similar systems;
- Draw on materials from a range of courses and wider reading in Mechanical Engineering principles and in related disciplines in order to solve problems in Mechanical Engineering including demonstrating depth and breadth to their learning;
- Apply business and management techniques that are relevant to Mechanical Engineering and Mechanical Engineers;
- Explain the role of Mechanical Engineers in society and the constraints within which their engineering judgement will be exercised;
- Explain the professional and ethical responsibilities of Mechanical Engineers;
- Consider the national and international role of the Mechanical Engineer and the impact of engineering solutions in a global context.

Skills and Other Attributes:

Graduates will be able to:

Subject-specific/practical skills

- Plan and execute safely a series of experiments in Mechanical Engineering;
- Design, from requirement, market need or specification, a Mechanical Engineering device or system, up to the preliminary design stage, and present this design via a series of poster, written and oral presentations from both group and individual work;
- Use laboratory and workshop equipment to generate data from Mechanical Engineering systems with appropriate rigour;
- Analyse experimental results in depth and determine their strength and validity;
- Assess the safety and potential efficacy of a device or system;
- Prepare technical drawings and technical reports;
- Give in depth technical presentations in oral form, as posters or in written form;
- Write up experimental methods, results and conclusions, and carefully and clearly plot experimental or computational results and interpret experimental data by the use of regression, curve fitting and filtering, applying appropriate statistical analysis;

- Use scientific literature effectively and by drawing on their knowledge from lectures and wider reading around the subject be able to solve Mechanical Engineering problems;
- Develop and update a research plan and adjust a work programme in order to conduct a major research project in academia or industry;
- Undertake a large scale supervised research project in academia or industry and present the results of this work in a written report and oral presentation to peers and staff;
- Work effectively in both individual and group projects;
- Explain in depth the managerial and economic factors facing a professional engineer;
- Document their solutions to Mechanical Engineering problems so that others can follow and validate their work;
- Apply professional engineering practice and judgement in project work;
- Write computer programs and use computational tools and packages, selecting the appropriate "state of the art" tools to solve Mechanical Engineering problems.

Intellectual skills

Graduates will be able to:

- Apply appropriate quantitative mathematical, scientific and engineering tools to the analysis of problems;
- Apply rigour in mathematics;
- Plan, conduct and report a programme of original research;
- Analyse and solve engineering problems;
- Design a Mechanical Engineering system, component or process to meet a need;
- Be creative in the solution of problems and in the development of designs;
- Integrate knowledge and understanding of other scientific, mathematical, computational or engineering disciplines in order to support their engineering specialisation;
- Formulate and test hypotheses modifying the hypotheses depending on the data obtained;
- Evaluate designs, processes and products and make improvements;
- Integrate and evaluate information and data from a variety of sources;
- Take a holistic approach in solving problems and designing systems, applying professional judgements to balance risks, costs, benefits, safety, reliability, aesthetics and environmental impact.

Transferable/key skills

The skill set of the Mechanical Engineer graduating from the MEng programme will be of use in a wide range of applications because of the multi-disciplinary nature of the subject. Their skills will be, by definition, transferable.

Graduates will be able to:

- Apply in depth problem solving and analytical thinking to a diverse range of problems;
- Use appropriate multi-disciplinary skills to solve Mechanical Engineering problems, combining the breadth of knowledge gained through the degree;
- Demonstrate numeracy and literacy in written reports, project work and examinations;
- Work in a group project environment and contribute effectively to the group project, including working as a member of an interdisciplinary team;
- Work on an individual project involving self-directed research;
- Communicate effectively (in writing, verbally and through drawings);
- Apply mathematical skills (algebra, geometry, modelling, analysis);
- Transfer techniques and solutions from one field of engineering to another and to the Mechanical field;
- Use information and communications technology;
- Manage resources and time effectively;
- Exercise team leadership;
- Learn independently in familiar and unfamiliar surroundings with open-mindedness and in the spirit of critical enquiry;
- Learn effectively for the purpose of continuing professional development and in a wider context throughout their career.

10. Typical Learning and Teaching Approaches:

Staff involved in the degree programme utilise a wide range of teaching methods that they deem the most appropriate for a particular course. These include:

- Lectures;
- External lectures from industry or clinicians;
- Feedback given to students during tutorials;
- Small group and large group tutorial sessions;
- Question and answer sessions during lectures or staff Office Hours;
- Guided reading of texts, journal articles etc., for individual and group projects;
- Completion of web-based exercises or computer based laboratory sessions;
- Laboratory sessions.

11. Typical Assessment Methods:

Assessment Methods to be used are:

- Written examinations (Summative assessment);
- Oral presentations of individual and group work;
- Individual written project report(s) of both individual and group projects;
- Group written project report(s) of group projects;
- Interview of group project manager and assessment of group project minutes;
- Poster presentation of group project work;
- Practical skills will be assessed through laboratory experiments, write-ups, coursework reports, project reports and presentations;
- Experimental, research and design skills will be assessed through laboratory experiments write-ups, coursework reports, project reports and presentations;
- Presentation skills through group presentations and poster presentations.

12. Programme Structure and Features:

MEng

H302-2204

MEng Year 1

Compulsory (Courses		
Course Code	Course	Credits	Semester
ENG1003	Analogue Electronics 1	10	1
ENG1015	Design and Manufacture 1	10	2
ENG1016	Mechanical Design 1	10	1&2
ENG1026	Engineering Skills 1	10	1 & 2
ENG1033	Materials 1	10	1
ENG1062	Dynamics 1	10	2
ENG1063	Engineering Mathematics 1	40	1 & 2
ENG1065	Statics 1	10	1
ENG1066	Thermodynamics 1	10	2
		120	

MEng Year 2

Compulsory Courses

Course Code	Course	Credits	Semester
ENG2015	Design and Manufacture 2	10	2
ENG2016	Mechanical Design 2	10	2
ENG2039	Materials 2	10	2
ENG2045	Power Electronics 2	10	1
ENG2053	Thermodynamics 2	10	2
ENG2077	Engineering Skills 2	10	1
ENG2081	Mechanics of Structures 2A	10	1
ENG2082	Mechanics of Structures 2B	10	1
ENG2084	Dynamics 2	10	2
ENG2085	Fluid Mechanics 2	10	1
ENG2086	Engineering Mathematics 2	20	1

		120	
MEng Year	~ 3		
•			
Compulsory C		One dite	Compositor
Course Code ENG3015	Course	Credits	Semester
ENG3015 ENG3030	Control 3 Fluid Mechanics 3	10 10	2 2
ENG3030 ENG3032	Heat Transfer 3	10	2
ENG3032 ENG3034	Instrumentation and Data Systems 3	10	2
ENG3035	Design and Manufacture 3	10	2
ENG3036	Simulation of Engineering Systems 3	10	1
ENG3037	Mechanics of Solids 3	10	1
ENG3039	Dynamics 3	10	1
ENG3053	Thermodynamics of Engines 3	10	1
ENG4025	Finite Element Analysis 4	10	1
	· ····· _·····	100	
Ontional Cou	(abaaaa 20 aradita)		
-	rses (choose 20 credits)	One dite	Compositor
Course Code	Course	Credits 10	Semester
COMPSCI3005 ENG3017	Software Engineering M3	20	2 1 & 2
ENG3017 ENG3041	Mechanical Design 3	20 10	2
ENG3041	Power Engineering 3	10	2
MEng Year			
Compulsory C	Course		
Course Code	Course	Credits	Semester
ENG4085	Integrated System Design Project 4	20	1&2
		20	
Optional Cour	rses (choose 100 credits)		
Course Code	Course	Credits	Semester
ENG4004	Materials Engineering 4	10	2
ENG4037	Computational Fluid Dynamics 4	10	2
ENG4042	Control 4	20	1
ENG4079	Industrial Aerodynamics 4	10	2
ENG4088	Lasers and Electro-Optic Systems 4	20	1
ENG4094	Mechanics of Solids 4	20	1
ENG4098	Microelectronics in Consumer Products 4	10	1
ENG4104	Power Systems 4	20	2
ENG4118	Robotics 4	20	2
ENG4137	Vibration 4	20	2
ENG4173	Renewable Energy 4	10	1
ENG4175	Autonomous Vehicle Guidance Systems 4	10	2
ENG4179	Advanced Thermal Engineering 4	20 20	1
ENG4186 ENG4187	Mechanical Design 4 Power Electronics and Drives 4	20	1&2
ENG4187 ENG4193		20	1
LAW1011	Ultrasound Technology and Applications 4 Elements of Law for Engineers	20 10	1 2
	Lightenis of Law for Lingineers	10	2
MEng Year	[,] 5		
Compulsory C			
Course Code	Course	Credits	Semester
ENG5041P	Individual Project 5	60	1
MGT5068	Professional Practice 5	20	2
		80	
Ontional Com	rses (choose 40 credits)		

Course Code	Course	Credits	Semester
ENG5009	Robust Control 5	10	2
ENG5017	Autonomous Vehicle Guidance Systems	10	2
ENG5048	Introduction to Wind Engineering	10	2
ENG5227	Structures under External Loads M	10	2
ENG5299	Dynamics 5	10	2
ENG5300	Materials Engineering 5	10	2
ENG5302	Ultrasound Technology and Applications	10	2
ENG5303	Advanced Thermal Engineering 5	10	2
ENG5307	Computational Fluid Dynamics 5	10	2
Regulations			
	will be governed by the relevant regulations published in t e the requirements in relation to:	the University Calend	ar. These
(a) Award of	the degree		
(b) Progress			
(c) Early exit	awards		
. ,	uk/services/senateoffice/calendar/		

13. Programme Accredited By:

Accredited by the Institution of Mechanical Engineers (IMechE) to CEng level.

14. Location(s):

Glasgow

15. College:

College of Science and Engineering

16. Lead School/Institute:

Engineering [REG30300000]

17. Is this programme collaborative with another institution:

No

18. Awarding Institution(s):

University of Glasgow

19. Teaching Institution(s):

University of Glasgow

20. Language of Instruction:

English

21. Language of Assessment:

English

22. Relevant QAA Subject Benchmark Statements (see <u>Quality Assurance Agency for Higher Education</u>) and Other External or Internal Reference Points:

This Programme Specification is informed by the QAA Benchmark Statement for Engineering

http://www.qaa.ac.uk/en/Publications/Documents/Subject-benchmark-statement-Engineering-.pdf

It is also informed by the Engineering Council Publication "UK Standard for Professional Engineering Competence (UK-SPEC)"

http://www.engc.org.uk/engcdocuments/internet/Website/UK-SPEC third edition (1).pdf

and the requirements of the Institution of Mechanical Engineers (http://www.imeche.org.uk/)

23. Additional Relevant Information (if applicable):

Support for students is provided by the Postgraduate/Undergraduate Adviser(s) of Studies supported by University resources such LEADS (<u>www.gla.ac.uk/myglasgow/leads/</u>), Counselling & Psychological Services (<u>www.gla.ac.uk/services/counselling/</u>), the Disability Service (<u>www.gla.ac.uk/services/studentdisability/</u>) and the Careers Service (<u>www.gla.ac.uk/services/careers/</u>).

24. Online Learning:

No

25. Date of approval:

07/08/2018