Dr Maxime Fairon

  • Rankin-Sneddon Research Fellow (Mathematics)

email: Maxime.Fairon@glasgow.ac.uk

Room 422, School of Mathematics and Statistics, University of Glasgow, University Place, Glasgow, G12 8QQ

ORCID iDhttps://orcid.org/0000-0002-2787-6913

Research interests

I am interested in the relations that exist between algebraic and geometric structures in the context of integrable systems. In particular, I study the non-commutative versions of Poisson geometry defined on associative algebras in order to find new classes of integrable systems on the representation spaces associated to these algebras.

Publications

List by: Type | Date

Jump to: 2021 | 2020 | 2019 | 2017
Number of items: 9.

2021

Fairon, M. (2021) Morphisms of double (quasi-)Poisson algebras and action-angle duality of integrable systems. Annales Henri Lebesgue, (Accepted for Publication)

Fairon, M. (2021) Double quasi-Poisson brackets: fusion and new examples. Algebras and Representation Theory, 24(4), pp. 911-958. (doi: 10.1007/s10468-020-09974-w)

Fairon, M. and Fehér, L. (2021) A decoupling property of some Poisson structures on Matn×d(C)×Matd×n(C) supporting GL(n,C)×GL(d,C) Poisson–Lie symmetry. Journal of Mathematical Physics, 62(3), 033512. (doi: 10.1063/5.0035935)

Fairon, M. , Fehér, L. and Marshall, I. (2021) Trigonometric real form of the spin RS model of Krichever and Zabrodin. Annales Henri Poincaré, 22(2), pp. 615-675. (doi: 10.1007/s00023-020-00976-4)

Fairon, M. and Görbe, T. (2021) Superintegrability of Calogero-Moser systems associated with the cyclic quiver. Nonlinearity, 34(11), pp. 7662-7682. (doi: 10.1088/1361-6544/ac2674)

2020

Chalykh, O. and Fairon, M. (2020) On the Hamiltonian formulation of the trigonometric spin Ruijsenaars-Schneider system. Letters in Mathematical Physics, 110(11), pp. 2893-2940. (doi: 10.1007/s11005-020-01320-x)

2019

Fairon, M. (2019) Spin versions of the complex trigonometric Ruijsenaars-Schneider model from cyclic quivers. Journal of Integrable Systems, 4(1), xyz008. (doi: 10.1093/integr/xyz008)

2017

Chalykh, O. and Fairon, M. (2017) Multiplicative quiver varieties and generalised Ruijsenaars–Schneider models. Journal of Geometry and Physics, 121, pp. 413-437. (doi: 10.1016/j.geomphys.2017.08.006)

Fairon, M. (2017) Introduction to graded geometry. European Journal of Mathematics, 3(2), pp. 208-222. (doi: 10.1007/s40879-017-0138-4)

This list was generated on Fri Jan 28 15:05:48 2022 GMT.
Jump to: Articles
Number of items: 9.

Articles

Fairon, M. (2021) Morphisms of double (quasi-)Poisson algebras and action-angle duality of integrable systems. Annales Henri Lebesgue, (Accepted for Publication)

Fairon, M. (2021) Double quasi-Poisson brackets: fusion and new examples. Algebras and Representation Theory, 24(4), pp. 911-958. (doi: 10.1007/s10468-020-09974-w)

Fairon, M. and Fehér, L. (2021) A decoupling property of some Poisson structures on Matn×d(C)×Matd×n(C) supporting GL(n,C)×GL(d,C) Poisson–Lie symmetry. Journal of Mathematical Physics, 62(3), 033512. (doi: 10.1063/5.0035935)

Fairon, M. , Fehér, L. and Marshall, I. (2021) Trigonometric real form of the spin RS model of Krichever and Zabrodin. Annales Henri Poincaré, 22(2), pp. 615-675. (doi: 10.1007/s00023-020-00976-4)

Fairon, M. and Görbe, T. (2021) Superintegrability of Calogero-Moser systems associated with the cyclic quiver. Nonlinearity, 34(11), pp. 7662-7682. (doi: 10.1088/1361-6544/ac2674)

Chalykh, O. and Fairon, M. (2020) On the Hamiltonian formulation of the trigonometric spin Ruijsenaars-Schneider system. Letters in Mathematical Physics, 110(11), pp. 2893-2940. (doi: 10.1007/s11005-020-01320-x)

Fairon, M. (2019) Spin versions of the complex trigonometric Ruijsenaars-Schneider model from cyclic quivers. Journal of Integrable Systems, 4(1), xyz008. (doi: 10.1093/integr/xyz008)

Chalykh, O. and Fairon, M. (2017) Multiplicative quiver varieties and generalised Ruijsenaars–Schneider models. Journal of Geometry and Physics, 121, pp. 413-437. (doi: 10.1016/j.geomphys.2017.08.006)

Fairon, M. (2017) Introduction to graded geometry. European Journal of Mathematics, 3(2), pp. 208-222. (doi: 10.1007/s40879-017-0138-4)

This list was generated on Fri Jan 28 15:05:48 2022 GMT.

Teaching

4H : Differential Geometry