Dr Ulrich Kraehmer

  • Honorary Research Fellow (School of Mathematics & Statistics)

email: Ulrich.Kraehmer@glasgow.ac.uk

R432 Level 4, Mathematics, Mathematics Building, Glasgow G12 8QW

Publications

List by: Type | Date

Jump to: 2017 | 2016 | 2015 | 2014 | 2012 | 2011 | 2010 | 2009 | 2008 | 2006 | 2005 | 2004 | 2003
Number of items: 23.

2017

Krähmer, U. and Tabiri, A. A. (2017) The nodal cubic is a quantum homogeneous space. Algebras and Representation Theory, 20(3), pp. 655-658. (doi: 10.1007/s10468-016-9658-8)

2016

Kraehmer, U. and Slevin, P. (2016) Factorisations of distributive laws. Journal of Pure and Applied Algebra, 220(4), pp. 1403-1418. (doi: 10.1016/j.jpaa.2015.09.008)

2015

Kraehmer, U. and Wagemann, F. (2015) Racks, Leibniz algebras and Yetter--Drinfel'd modules. Georgian Mathematical Journal, 22(4), pp. 529-542. (doi: 10.1515/gmj-2015-0049)

Kowalzig, N., Krähmer, U. and Slevin, P. (2015) Cyclic homology arising from adjunctions. Theory and Applications of Categories, 30(32), pp. 1067-1095.

Krähmer, U. and Rovi, A. (2015) A Lie-Rinehart algebra with no antipode. Communications in Algebra, 43(10), pp. 4049-4053. (doi: 10.1080/00927872.2014.896375)

Krähmer, U. and Tucker-Simmons, M. (2015) On the Dolbeault-Dirac operator of quantized symmetric spaces. Transactions of the London Mathematical Society, 2(1), pp. 33-56. (doi: 10.1112/tlms/tlv002)

2014

Kowalzig, N. and Krähmer, U. (2014) Batalin-Vilkovisky structures on Ext and Tor. Journal für die Reine und Angewandte Mathematik (Crelles Journal), 2014(697), pp. 159-219. (doi: 10.1515/crelle-2012-0086)

Goodman, J. and Krahmer, U. (2014) Untwisting a twisted Calabi–Yau algebra. Journal of Algebra, 406, pp. 272-289. (doi: 10.1016/j.jalgebra.2014.02.018)

2012

Kraehmer, U. (2012) On the Hochschild (co)homology of quantum homogeneous spaces. Israel Journal of Mathematics, 189(1), pp. 237-266. (doi: 10.1007/s11856-011-0168-4)

Kraehmer, U., Rennie, A. and Senior, R. (2012) A residue formula for the fundamental Hochschild 3-cocycle for SUq(2). Journal of Lie Theory, 22(2), pp. 557-585.

2011

Hajac, P. M., Krähmer, U., Matthea, R. and Zielinski, B. (2011) Piecewise principal comodule algebras. Journal of Noncommutative Geometry, 5(4), pp. 591-614. (doi: 10.4171/JNCG/88)

Kowalzig, N. and Kraehmer, U. (2011) Cyclic structures in algebraic cohomology theories. Homology, Homotopy and Applications, 13(1), pp. 297-318. (doi: 10.4310/HHA.2011.v13.n1.a11)

2010

Hadfield, T. and Kraehmer, U. (2010) Twisted homology of quantum SL(2) - part II. Journal of K-theory: K-theory and its Applications to Algebra, Geometry and Topology, 6(1), pp. 69-98. (doi: 10.1017/is009009022jkt091)

Kowalzig, N. and Kraehmer, U. (2010) Duality and products in algebraic (co)homology theories. Journal of Algebra, 323(7), pp. 2063-2081. (doi: 10.1016/j.jalgebra.2009.12.026)

2009

Hadfield, T. and Kraehmer, U. (2009) Braided homology for quantum groups. Journal of K-theory: K-theory and its Applications to Algebra, Geometry and Topology, 4, pp. 299-332. (doi: 10.1017/is008008021jkt063)

2008

Kraehmer, U. (2008) The Hochschild cohomology ring of the standard Podleś quantum sphere. Arabian Journal for Science and Engineering, 33(2C), pp. 325-335.

Kraehmer, U. (2008) On the non-standard Podleś spheres. In: C*-algebras and Elliptic Theory II. Springer: Birkhäuser Basel, pp. 145-147. ISBN 9783764386030 (doi:10.1007/978-3-7643-8604-7_7)

2006

Hadfield, T. and Kraehmer, U. (2006) On the Hochschild homology of quantum SL(N). Comptes Rendus Mathématique, 343(1), pp. 9-13. (doi: 10.1016/j.crma.2006.03.031)

Kraehmer, U. (2006) Poincaré duality in Hochschild (co)homology. In: New Techniques in Hopf Algebras and Graded Ring Theory, Brussels, 19-23 Sept 2006, pp. 117-126.

Kraehmer, U. and Zieliński, B. (2006) On piecewise trivial Hopf—Galois extensions. Czechoslovak Journal of Physics, 56(10-11), pp. 1221-1226. (doi: 10.1007/s10582-006-0428-4)

2005

Hadfield, T. and Kraehmer, U. (2005) Twisted homology of quantum SL(2). K-Theory, 34(4), pp. 327-360. (doi: 10.1007/s10977-005-3118-2)

2004

Kraehmer, U. (2004) Dirac operators on quantum flag manifolds. Letters in Mathematical Physics, 67(1), pp. 49-59. (doi: 10.1023/B:MATH.0000027748.64886.23)

2003

Kraehmer, U. (2003) FRT-duals as quantum enveloping algebras. Journal of Algebra, 264(1), pp. 68-81. (doi: 10.1016/S0021-8693(03)00116-9)

This list was generated on Fri Sep 24 16:05:28 2021 BST.
Number of items: 23.

Articles

Krähmer, U. and Tabiri, A. A. (2017) The nodal cubic is a quantum homogeneous space. Algebras and Representation Theory, 20(3), pp. 655-658. (doi: 10.1007/s10468-016-9658-8)

Kraehmer, U. and Slevin, P. (2016) Factorisations of distributive laws. Journal of Pure and Applied Algebra, 220(4), pp. 1403-1418. (doi: 10.1016/j.jpaa.2015.09.008)

Kraehmer, U. and Wagemann, F. (2015) Racks, Leibniz algebras and Yetter--Drinfel'd modules. Georgian Mathematical Journal, 22(4), pp. 529-542. (doi: 10.1515/gmj-2015-0049)

Kowalzig, N., Krähmer, U. and Slevin, P. (2015) Cyclic homology arising from adjunctions. Theory and Applications of Categories, 30(32), pp. 1067-1095.

Krähmer, U. and Rovi, A. (2015) A Lie-Rinehart algebra with no antipode. Communications in Algebra, 43(10), pp. 4049-4053. (doi: 10.1080/00927872.2014.896375)

Krähmer, U. and Tucker-Simmons, M. (2015) On the Dolbeault-Dirac operator of quantized symmetric spaces. Transactions of the London Mathematical Society, 2(1), pp. 33-56. (doi: 10.1112/tlms/tlv002)

Kowalzig, N. and Krähmer, U. (2014) Batalin-Vilkovisky structures on Ext and Tor. Journal für die Reine und Angewandte Mathematik (Crelles Journal), 2014(697), pp. 159-219. (doi: 10.1515/crelle-2012-0086)

Goodman, J. and Krahmer, U. (2014) Untwisting a twisted Calabi–Yau algebra. Journal of Algebra, 406, pp. 272-289. (doi: 10.1016/j.jalgebra.2014.02.018)

Kraehmer, U. (2012) On the Hochschild (co)homology of quantum homogeneous spaces. Israel Journal of Mathematics, 189(1), pp. 237-266. (doi: 10.1007/s11856-011-0168-4)

Kraehmer, U., Rennie, A. and Senior, R. (2012) A residue formula for the fundamental Hochschild 3-cocycle for SUq(2). Journal of Lie Theory, 22(2), pp. 557-585.

Hajac, P. M., Krähmer, U., Matthea, R. and Zielinski, B. (2011) Piecewise principal comodule algebras. Journal of Noncommutative Geometry, 5(4), pp. 591-614. (doi: 10.4171/JNCG/88)

Kowalzig, N. and Kraehmer, U. (2011) Cyclic structures in algebraic cohomology theories. Homology, Homotopy and Applications, 13(1), pp. 297-318. (doi: 10.4310/HHA.2011.v13.n1.a11)

Hadfield, T. and Kraehmer, U. (2010) Twisted homology of quantum SL(2) - part II. Journal of K-theory: K-theory and its Applications to Algebra, Geometry and Topology, 6(1), pp. 69-98. (doi: 10.1017/is009009022jkt091)

Kowalzig, N. and Kraehmer, U. (2010) Duality and products in algebraic (co)homology theories. Journal of Algebra, 323(7), pp. 2063-2081. (doi: 10.1016/j.jalgebra.2009.12.026)

Hadfield, T. and Kraehmer, U. (2009) Braided homology for quantum groups. Journal of K-theory: K-theory and its Applications to Algebra, Geometry and Topology, 4, pp. 299-332. (doi: 10.1017/is008008021jkt063)

Kraehmer, U. (2008) The Hochschild cohomology ring of the standard Podleś quantum sphere. Arabian Journal for Science and Engineering, 33(2C), pp. 325-335.

Hadfield, T. and Kraehmer, U. (2006) On the Hochschild homology of quantum SL(N). Comptes Rendus Mathématique, 343(1), pp. 9-13. (doi: 10.1016/j.crma.2006.03.031)

Kraehmer, U. and Zieliński, B. (2006) On piecewise trivial Hopf—Galois extensions. Czechoslovak Journal of Physics, 56(10-11), pp. 1221-1226. (doi: 10.1007/s10582-006-0428-4)

Hadfield, T. and Kraehmer, U. (2005) Twisted homology of quantum SL(2). K-Theory, 34(4), pp. 327-360. (doi: 10.1007/s10977-005-3118-2)

Kraehmer, U. (2004) Dirac operators on quantum flag manifolds. Letters in Mathematical Physics, 67(1), pp. 49-59. (doi: 10.1023/B:MATH.0000027748.64886.23)

Kraehmer, U. (2003) FRT-duals as quantum enveloping algebras. Journal of Algebra, 264(1), pp. 68-81. (doi: 10.1016/S0021-8693(03)00116-9)

Book Sections

Kraehmer, U. (2008) On the non-standard Podleś spheres. In: C*-algebras and Elliptic Theory II. Springer: Birkhäuser Basel, pp. 145-147. ISBN 9783764386030 (doi:10.1007/978-3-7643-8604-7_7)

Conference Proceedings

Kraehmer, U. (2006) Poincaré duality in Hochschild (co)homology. In: New Techniques in Hopf Algebras and Graded Ring Theory, Brussels, 19-23 Sept 2006, pp. 117-126.

This list was generated on Fri Sep 24 16:05:28 2021 BST.