Dr Gary Napier
- Lecturer (Statistics)
email:
Gary.Napier@glasgow.ac.uk
School Of Mathematics & Statisti
email:
Gary.Napier@glasgow.ac.uk
School Of Mathematics & Statisti
Yin, X., Napier, G. , Anderson, C. and Lee, D. (2022) Spatio-temporal disease risk estimation using clustering-based adjacency modelling. Statistical Methods in Medical Research, 31(6), pp. 1184-1203. (doi: 10.1177/09622802221084131) (PMID:35286183) (PMCID:PMC9245163)
Napier, G. , Lee, D. , Robertson, C. and Lawson, A. (2019) A Bayesian space–time model for clustering areal units based on their disease trends. Biostatistics, 20(4), pp. 681-697. (doi: 10.1093/biostatistics/kxy024) (PMID:29917057) (PMCID:PMC6797054)
Lee, D. , Roertson, C., Ramsay, C., Gillespie, C. and Napier, G. (2019) Estimating the health impact of air pollution in Scotland, and the resulting benefits of reducing concentrations in city centres. Spatial and Spatio-Temporal Epidemiology, 29, pp. 85-96. (doi: 10.1016/j.sste.2019.02.003)
Lee, D. , Rushworth, A. and Napier, G. (2018) Spatio-temporal areal unit modelling in R with conditional autoregressive priors using the CARBayesST package. Journal of Statistical Software, 84(9), (doi: 10.18637/jss.v084.i09)
Napier, G. , Lee, D. , Robertson, C., Lawson, A. and Pollock, K. G. (2016) A model to estimate the impact of changes in MMR vaccine uptake on inequalities in measles susceptibility in Scotland. Statistical Methods in Medical Research, 25(4), pp. 1185-1200. (doi: 10.1177/0962280216660420) (PMID:27566772)
Napier, G. , Nobile, A. and Neocleous, T. (2015) An online application for the classification and evidence evaluation of forensic glass fragments. Chemometrics and Intelligent Laboratory Systems, 146, pp. 418-425. (doi: 10.1016/j.chemolab.2015.06.013)
Napier, G., Neocleous, T. and Nobile, A. (2015) A composite Bayesian hierarchical model of compositional data with zeros. Journal of Chemometrics, 9(2), pp. 96-108. (doi: 10.1002/cem.2681)
Yin, X., Napier, G. , Anderson, C. and Lee, D. (2022) Spatio-temporal disease risk estimation using clustering-based adjacency modelling. Statistical Methods in Medical Research, 31(6), pp. 1184-1203. (doi: 10.1177/09622802221084131) (PMID:35286183) (PMCID:PMC9245163)
Napier, G. , Lee, D. , Robertson, C. and Lawson, A. (2019) A Bayesian space–time model for clustering areal units based on their disease trends. Biostatistics, 20(4), pp. 681-697. (doi: 10.1093/biostatistics/kxy024) (PMID:29917057) (PMCID:PMC6797054)
Lee, D. , Roertson, C., Ramsay, C., Gillespie, C. and Napier, G. (2019) Estimating the health impact of air pollution in Scotland, and the resulting benefits of reducing concentrations in city centres. Spatial and Spatio-Temporal Epidemiology, 29, pp. 85-96. (doi: 10.1016/j.sste.2019.02.003)
Lee, D. , Rushworth, A. and Napier, G. (2018) Spatio-temporal areal unit modelling in R with conditional autoregressive priors using the CARBayesST package. Journal of Statistical Software, 84(9), (doi: 10.18637/jss.v084.i09)
Napier, G. , Lee, D. , Robertson, C., Lawson, A. and Pollock, K. G. (2016) A model to estimate the impact of changes in MMR vaccine uptake on inequalities in measles susceptibility in Scotland. Statistical Methods in Medical Research, 25(4), pp. 1185-1200. (doi: 10.1177/0962280216660420) (PMID:27566772)
Napier, G. , Nobile, A. and Neocleous, T. (2015) An online application for the classification and evidence evaluation of forensic glass fragments. Chemometrics and Intelligent Laboratory Systems, 146, pp. 418-425. (doi: 10.1016/j.chemolab.2015.06.013)
Napier, G., Neocleous, T. and Nobile, A. (2015) A composite Bayesian hierarchical model of compositional data with zeros. Journal of Chemometrics, 9(2), pp. 96-108. (doi: 10.1002/cem.2681)
The University of Glasgow uses cookies for analytics and advertising. Find out more about our Privacy policy.
Necessary cookies enable core functionality. The website cannot function properly without these cookies, and can only be disabled by changing your browser preferences.
Analytical cookies help us improve our website. We use Google Analytics. All data is anonymised.
Hotjar helps us to understand and improve our users’ behaviour by visually representing their clicks, taps and scrolling. All data is anonymised.
Marketing cookies are used to ensure our marketing content is relevant, timely and interest based. They allow our approved partner to measure effectiveness and serve appropriate and personalised marketing messages on other websites based on your activity on glasgow.ac.uk