Number of items: 8.
2020
Bönicke, C.
(2020)
A Going-Down principle for ample groupoids and the Baum-Connes conjecture.
Advances in Mathematics, 372,
107314.
(doi: 10.1016/j.aim.2020.107314)
Easo, P. et al.
(2020)
The Cuntz-Toeplitz algebras have nuclear dimension one.
Journal of Functional Analysis, 279(7),
108690.
(doi: 10.1016/j.jfa.2020.108690)
Ara, P., Bonicke, C. , Bosa, J. and Li, K.
(2020)
Strict comparison for C*-algebras arising from almost finite groupoids.
Banach Journal of Mathematical Analysis, 14,
pp. 1692-1710.
(doi: 10.1007/s43037-020-00079-6)
Bonicke, C. , Chakraborty, S., He, Z. and Liao, H.-C.
(2020)
A note on crossed products of rotation algebras.
Journal of Operator Theory,
(Accepted for Publication)
Bönicke, C. and Li, K.
(2020)
Ideal structure and pure infiniteness of ample groupoid C* -algebras.
Ergodic Theory and Dynamical Systems, 40(1),
pp. 34-63.
(doi: 10.1017/etds.2018.39)
2019
Bönicke, C. and Dell'Aiera, C.
(2019)
Going-down functors and the Künneth formula for crossed products by étale groupoids.
Transactions of the American Mathematical Society, 372,
pp. 8159-8194.
(doi: 10.1090/tran/7913)
Bönicke, C.
(2019)
K-theory and homotopies of twists on ample groupoids.
Journal of Noncommutative Geometry,
(Accepted for Publication)
2018
Bonicke, C. , Chakraborty, S., He, Z. and Liao, H.-C.
(2018)
Isomorphism and Morita equivalence classes for crossed products of irrational rotation algebras by cyclic subgroups of SL2(Z).
Journal of Functional Analysis, 275(11),
pp. 3208-3243.
(doi: 10.1016/j.jfa.2018.08.008)
This list was generated on Sat Jan 16 05:06:38 2021 GMT.