Number of items: **9**.

## 2021

Ara, P., Bonicke, C. , Bosa, J. and Li, K.
(2021)
The type semigroup, comparison and almost finiteness for ample groupoids.
*Ergodic Theory and Dynamical Systems*,
(Accepted for Publication)

Bönicke, C.
(2021)
K-theory and homotopies of twists on ample groupoids.
*Journal of Noncommutative Geometry*, 15(1),
pp. 195-222.
(doi: 10.4171/JNCG/399)

Bonicke, C. , Chakraborty, S., He, Z. and Liao, H.-C.
(2021)
A note on crossed products of rotation algebras.
*Journal of Operator Theory*, 85(2),
pp. 391-402.
(doi: 10.7900/jot.2019sep08.2283)

## 2020

Bönicke, C.
(2020)
A Going-Down principle for ample groupoids and the Baum-Connes conjecture.
*Advances in Mathematics*, 372,
107314.
(doi: 10.1016/j.aim.2020.107314)

Easo, P. et al.
(2020)
The Cuntz-Toeplitz algebras have nuclear dimension one.
*Journal of Functional Analysis*, 279(7),
108690.
(doi: 10.1016/j.jfa.2020.108690)

Ara, P., Bonicke, C. , Bosa, J. and Li, K.
(2020)
Strict comparison for C*-algebras arising from almost finite groupoids.
*Banach Journal of Mathematical Analysis*, 14,
pp. 1692-1710.
(doi: 10.1007/s43037-020-00079-6)

Bönicke, C. and Li, K.
(2020)
Ideal structure and pure infiniteness of ample groupoid C* -algebras.
*Ergodic Theory and Dynamical Systems*, 40(1),
pp. 34-63.
(doi: 10.1017/etds.2018.39)

## 2019

Bönicke, C. and Dell'Aiera, C.
(2019)
Going-down functors and the Künneth formula for crossed products by étale groupoids.
*Transactions of the American Mathematical Society*, 372,
pp. 8159-8194.
(doi: 10.1090/tran/7913)

## 2018

Bonicke, C. , Chakraborty, S., He, Z. and Liao, H.-C.
(2018)
Isomorphism and Morita equivalence classes for crossed products of irrational rotation algebras by cyclic subgroups of SL2(Z).
*Journal of Functional Analysis*, 275(11),
pp. 3208-3243.
(doi: 10.1016/j.jfa.2018.08.008)

This list was generated on **Fri Sep 24 05:24:32 2021 BST**.