telephone:
0141 330 2821
Main, A. and Fuller, W. (2022) Protein S‐palmitoylation: advances and challenges in studying a therapeutically important lipid modification. FEBS Journal, 289(4), pp. 861-882. (doi: 10.1111/febs.15781) (PMID:33624421)
Gök, C. , Main, A., Gao, X., Kerekes, Z., Plain, F., Kuo, C.-W., Robertson, A. D., Fraser, N. J. and Fuller, W. (2021) Insights into the molecular basis of the palmitoylation and depalmitoylation of NCX1. Cell Calcium, 97, 102408. (doi: 10.1016/j.ceca.2021.102408) (PMID:33873072)
Main, A., Robertson-Gray, O. and Fuller, W. (2021) Cyclophilin D palmitoylation and permeability transition: a new twist in the tale of myocardial ischaemia-reperfusion injury. Cardiovascular Research, 117(1), pp. 15-17. (doi: 10.1093/cvr/cvaa149) (PMID:32449761)
Main, A. and Fuller, W. (2022) Protein S‐palmitoylation: advances and challenges in studying a therapeutically important lipid modification. FEBS Journal, 289(4), pp. 861-882. (doi: 10.1111/febs.15781) (PMID:33624421)
Gök, C. , Main, A., Gao, X., Kerekes, Z., Plain, F., Kuo, C.-W., Robertson, A. D., Fraser, N. J. and Fuller, W. (2021) Insights into the molecular basis of the palmitoylation and depalmitoylation of NCX1. Cell Calcium, 97, 102408. (doi: 10.1016/j.ceca.2021.102408) (PMID:33873072)
Main, A., Robertson-Gray, O. and Fuller, W. (2021) Cyclophilin D palmitoylation and permeability transition: a new twist in the tale of myocardial ischaemia-reperfusion injury. Cardiovascular Research, 117(1), pp. 15-17. (doi: 10.1093/cvr/cvaa149) (PMID:32449761)
The University of Glasgow uses cookies for analytics and advertising. Find out more about our Privacy policy.
Necessary cookies enable core functionality. The website cannot function properly without these cookies, and can only be disabled by changing your browser preferences.
Analytical cookies help us improve our website. We use Google Analytics. All data is anonymised.
Hotjar helps us to understand and improve our users’ behaviour by visually representing their clicks, taps and scrolling. All data is anonymised.
Marketing cookies are used to ensure our marketing content is relevant, timely and interest based. They allow our approved partner to measure effectiveness and serve appropriate and personalised marketing messages on other websites based on your activity on glasgow.ac.uk