Number of items: 23.
2023
Li, Z.
(2023)
Leveraging explainable artificial intelligence and big trip data to understand factors influencing willingness to ridesharing.
Travel Behaviour and Society, 31,
pp. 284-294.
(doi: 10.1016/j.tbs.2022.12.006)
Gong, X., Lu, Y., Beene, D., Li, Z. , Hu, T., Morgan, M. and Lin, Y.
(2023)
Understanding public perspectives on fracking in the United States using social media big data.
Annals of GIS, 29(1),
pp. 21-35.
(doi: 10.1080/19475683.2022.2121856)
Zhao, Q. , Li, Z. , Shah, D., Fischer, H., Solís, P. and Wentz, E.
(2023)
Understanding the interaction between human activities and physical health under extreme heat environment in Phoenix, Arizona.
Health and Place, 79,
102691.
(doi: 10.1016/j.healthplace.2021.102691)
(PMID:34656430)
2022
Sachdeva, M., Fotheringham, A. S., Li, Z. and Yu, H.
(2022)
Are we modelling spatially varying processes or non-linear relationships?
Geographical Analysis, 54(4),
pp. 715-738.
(doi: 10.1111/gean.12297)
Fotheringham, A. S., Yu, H., Wolf, L. J., Oshan, T. M. and Li, Z.
(2022)
On the notion of ‘bandwidth’ in geographically weighted regression models of spatially varying processes.
International Journal of Geographical Information Science, 36(8),
pp. 1485-1502.
(doi: 10.1080/13658816.2022.2034829)
Li, Z.
(2022)
Extracting spatial effects from machine learning model using local interpretation method: an example of SHAP and XGBoost.
Computers, Environment and Urban Systems, 96,
101845.
(doi: 10.1016/j.compenvurbsys.2022.101845)
Rey, S. J. et al.
(2022)
The PySAL ecosystem: philosophy and implementation.
Geographical Analysis, 54(3),
pp. 467-487.
(doi: 10.1111/gean.12276)
Li, Z. and Fotheringham, A. S.
(2022)
The spatial and temporal dynamics of voter preference determinants in four U.S. presidential elections (2008-2020).
Transactions in GIS, 26(3),
pp. 1609-1628.
(doi: 10.1111/tgis.12880)
Wang, C., Li, Z. , Clay Mathews, M., Praharaj, S., Karna, B. and Solís, P.
(2022)
The spatial association of social vulnerability with COVID-19 prevalence in the contiguous United States.
International Journal of Environmental Health Research, 32(5),
pp. 1147-1154.
(doi: 10.1080/09603123.2020.1847258)
(PMID:33228411)
Li, Z. and Xu, T.
(2022)
Understanding Factors Influencing Willingness to Ridesharing Using Big Trip Data and Interpretable Machine Learning.
In: GISRUK 2022, Liverpool, UK, 05-08 Apr 2022,
(Accepted for Publication)
Sachdeva, M., Fotheringham, S. and Li, Z.
(2022)
Do places have value?: Quantifying the intrinsic value of housing neighborhoods using MGWR.
Journal of Housing Research, 31(1),
pp. 24-52.
(doi: 10.1080/10527001.2021.2003505)
2021
Kurji, J., Thickstun, C., Bulcha, G., Taljaard, M., Li, Z. and Kulkarni, M. A.
(2021)
Spatial variability in factors influencing maternal health service use in Jimma Zone, Ethiopia: a geographically-weighted regression analysis.
BMC Health Services Research, 21,
454.
(doi: 10.1186/S12913-021-06379-3)
(PMID:33980233)
(PMCID:PMC8117568)
Fotheringham, A. S., Li, Z. and Wolf, L. J.
(2021)
Scale, context, and heterogeneity: a spatial analytical perspective on the 2016 U.S. presidential election.
Annals of the American Association of Geographers, 111(6),
pp. 1602-1621.
(doi: 10.1080/24694452.2020.1835459)
2020
Li, Z. , Fotheringham, A. S., Oshan, T. M. and Wolf, L. J.
(2020)
Measuring bandwidth uncertainty in multiscale geographically weighted regression using Akaike weights.
Annals of the American Association of Geographers, 110(5),
pp. 1500-1520.
(doi: 10.1080/24694452.2019.1704680)
Yu, H., Fotheringham, A. S., Li, Z. , Oshan, T. and Wolf, L. J.
(2020)
On the measurement of bias in geographically weighted regression models.
Spatial Statistics, 38,
100453.
(doi: 10.1016/j.spasta.2020.100453)
Li, Z. and Fotheringham, A. S.
(2020)
Computational improvements to multi-scale geographically weighted regression.
International Journal of Geographical Information Science, 34(7),
pp. 1378-1397.
(doi: 10.1080/13658816.2020.1720692)
Yu, H., Fotheringham, A. S., Li, Z. , Oshan, T., Kang, W. and Wolf, L. J.
(2020)
Inference in multiscale geographically weighted regression.
Geographical Analysis, 52(1),
pp. 87-106.
(doi: 10.1111/gean.12189)
2019
Fotheringham, A. S., Yue, H. and Li, Z.
(2019)
Examining the influences of air quality in China's cities using multi‐scale geographically weighted regression.
Transactions in GIS, 23(6),
pp. 1444-1464.
(doi: 10.1111/tgis.12580)
Oshan, T., Wolf, L. J., Fotheringham, A. S., Kang, W., Li, Z. and Yu, H.
(2019)
A comment on geographically weighted regression with parameter-specific distance metrics.
International Journal of Geographical Information Science, 33(7),
pp. 1289-1299.
(doi: 10.1080/13658816.2019.1572895)
Oshan, T. M., Li, Z. , Kang, W., Wolf, L. J. and Fotheringham, A. S.
(2019)
mgwr: a Python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale.
ISPRS International Journal of Geo-Information, 8(6),
269.
(doi: 10.3390/ijgi8060269)
Li, Z. , Fotheringham, A. S., Li, W. and Oshan, T.
(2019)
Fast Geographically Weighted Regression (FastGWR): a scalable algorithm to investigate spatial process heterogeneity in millions of observations.
International Journal of Geographical Information Science, 33(1),
pp. 155-175.
(doi: 10.1080/13658816.2018.1521523)
2018
Li, Z.
(2018)
NoSQL databases.
Geographic Information Science and Technology Body of Knowledge, 2018(Q2),
(doi: 10.22224/gistbok/2018.2.10)
2015
Li, Z. , Zhang, Z. and Davey, K.
(2015)
Estimating geographical PV potential using LiDAR data for buildings in downtown San Francisco.
Transactions in GIS, 19(6),
pp. 930-963.
(doi: 10.1111/tgis.12140)
This list was generated on Fri Mar 31 20:25:47 2023 BST.