Ms Annemarie Pickersgill

  • Research Assistant in Meteorite Impacts (School of Geographical & Earth Sciences)

Research interests

My research is focused on three aspects of impact cratering: the creation of habitable environments, age determination via 40Ar/39Ar geochronology, and shock metamorphism. 

My current research project is investigating micro-tunnels in impact-generated glasses in order to determine whether or not they are biotic in origin, and if so, whether or not the biota colonised the site as the result of an impact-induced hydrothermal system. The samples for this study come from the Ries, Boltysh, Dellen, and Rochechouart impact structures.

I am also working on the geochronology of terrestrial impact structures, including Chicxulub, Boltysh, and Gow Lake, and I am studying the effects of shock metamorphism on feldspar group minerals from Chicxulub. 


Publications

List by: Type | Date

Jump to: 2018 | 2017 | 2016 | 2015 | 2013 | 2012
Number of items: 14.

2018

Riller, U. et al. (2018) Rock fluidization during peak-ring formation of large impact structures. Nature, 562(7728), pp. 511-518. (doi:10.1038/s41586-018-0607-z) (PMID:30356184)

Lofi, J. et al. (2018) Drilling-induced and logging-related features illustrated from IODP–ICDP Expedition 364 downhole logs and borehole imaging tools. Scientific Drilling, 24, pp. 1-13. (doi:10.5194/sd-24-1-2018)

Christeson, G.L. et al. (2018) Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density, and porosity measurements from IODP/ICDP Expedition 364. Earth and Planetary Science Letters, 495, pp. 1-11. (doi:10.1016/j.epsl.2018.05.013)

Lowery, C. M. et al. (2018) Rapid recovery of life at ground zero of the end-Cretaceous mass extinction. Nature, 558, pp. 288-291. (doi:10.1038/s41586-018-0163-6) (PMID:29849143)

2017

Artemieva, N., Morgan, J. and Expedition 364 Science Party, (2017) Quantifying the release of climate-active gases by large meteorite impacts with a case study of Chicxulub. Geophysical Research Letters, 44(20), 10,180-10,188. (doi:10.1002/2017GL074879)

Kring, D. A., Claeys, P., Gulick, S. P.S., Morgan, J. V., Collins, G. S. and IODP-ICDP Expedition 364 Science Party, (2017) Chicxulub and the exploration of large peak-ring impact craters through scientific drilling. GSA Today, 27(10), pp. 4-8. (doi:10.1130/GSATG352A.1)

Pickersgill, A.E. , Lee, M.R. , Daly, L., Mark, D.F. and IODP-ICDP Expedition 2017, (2017) Planar Features (Lamellar Subgrains) in Feldspar from the Chicxulub Impact Structure. 80th Annual Meeting of the Meteoritical Society, Santa Fe, NM, USA, 23-28 Jul 2017.

Pickersgill, A.E. , Lee, M.R. , Daly, L. and Mark, D.F. (2017) Shock Metamorphism in Feldspar from the Chicxulub Impact Structure. 1st British Planetary Science Congress, Glasgow, UK, 3-5 Dec 2017.

2016

Morgan, J. V. et al. (2016) The formation of peak rings in large impact craters. Science, 354(6314), pp. 878-882. (doi:10.1126/science.aah6561) (PMID:27856906)

2015

Pickersgill, A. E. , Flemming, R. L. and Osinski, G. R. (2015) Toward quantification of strain-related mosaicity in shocked lunar and terrestrial plagioclase by in situ micro-X-ray diffraction. Meteoritics and Planetary Science, 50(11), pp. 1851-1862. (doi:10.1111/maps.12514)

Pickersgill, A. E. , Osinski, G. R. and Flemming, R. L. (2015) Shock effects in plagioclase feldspar from the Mistastin Lake impact structure, Canada. Meteoritics and Planetary Science, 50(9), pp. 1546-1561. (doi:10.1111/maps.12495)

2013

Antonenko, I. et al. (2013) Issues of geologically-focused situational awareness in robotic planetary missions: Lessons from an analogue mission at Mistastin Lake impact structure, Labrador, Canada. Advances in Space Research, 52(2), pp. 272-284. (doi:10.1016/j.asr.2012.11.024)

Osinski, G. R. et al. (2013) Impact-generated hydrothermal systems on Earth and Mars. Icarus, 224(2), pp. 347-363. (doi:10.1016/j.icarus.2012.08.030)

2012

Moores, J. E. et al. (2012) A mission control architecture for robotic lunar sample return as field tested in an analogue deployment to the Sudbury impact structure. Advances in Space Research, 50(12), pp. 1666-1686. (doi:10.1016/j.asr.2012.05.008)

This list was generated on Sat Feb 16 20:19:47 2019 GMT.
Number of items: 14.

Articles

Riller, U. et al. (2018) Rock fluidization during peak-ring formation of large impact structures. Nature, 562(7728), pp. 511-518. (doi:10.1038/s41586-018-0607-z) (PMID:30356184)

Lofi, J. et al. (2018) Drilling-induced and logging-related features illustrated from IODP–ICDP Expedition 364 downhole logs and borehole imaging tools. Scientific Drilling, 24, pp. 1-13. (doi:10.5194/sd-24-1-2018)

Christeson, G.L. et al. (2018) Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density, and porosity measurements from IODP/ICDP Expedition 364. Earth and Planetary Science Letters, 495, pp. 1-11. (doi:10.1016/j.epsl.2018.05.013)

Lowery, C. M. et al. (2018) Rapid recovery of life at ground zero of the end-Cretaceous mass extinction. Nature, 558, pp. 288-291. (doi:10.1038/s41586-018-0163-6) (PMID:29849143)

Artemieva, N., Morgan, J. and Expedition 364 Science Party, (2017) Quantifying the release of climate-active gases by large meteorite impacts with a case study of Chicxulub. Geophysical Research Letters, 44(20), 10,180-10,188. (doi:10.1002/2017GL074879)

Kring, D. A., Claeys, P., Gulick, S. P.S., Morgan, J. V., Collins, G. S. and IODP-ICDP Expedition 364 Science Party, (2017) Chicxulub and the exploration of large peak-ring impact craters through scientific drilling. GSA Today, 27(10), pp. 4-8. (doi:10.1130/GSATG352A.1)

Morgan, J. V. et al. (2016) The formation of peak rings in large impact craters. Science, 354(6314), pp. 878-882. (doi:10.1126/science.aah6561) (PMID:27856906)

Pickersgill, A. E. , Flemming, R. L. and Osinski, G. R. (2015) Toward quantification of strain-related mosaicity in shocked lunar and terrestrial plagioclase by in situ micro-X-ray diffraction. Meteoritics and Planetary Science, 50(11), pp. 1851-1862. (doi:10.1111/maps.12514)

Pickersgill, A. E. , Osinski, G. R. and Flemming, R. L. (2015) Shock effects in plagioclase feldspar from the Mistastin Lake impact structure, Canada. Meteoritics and Planetary Science, 50(9), pp. 1546-1561. (doi:10.1111/maps.12495)

Antonenko, I. et al. (2013) Issues of geologically-focused situational awareness in robotic planetary missions: Lessons from an analogue mission at Mistastin Lake impact structure, Labrador, Canada. Advances in Space Research, 52(2), pp. 272-284. (doi:10.1016/j.asr.2012.11.024)

Osinski, G. R. et al. (2013) Impact-generated hydrothermal systems on Earth and Mars. Icarus, 224(2), pp. 347-363. (doi:10.1016/j.icarus.2012.08.030)

Moores, J. E. et al. (2012) A mission control architecture for robotic lunar sample return as field tested in an analogue deployment to the Sudbury impact structure. Advances in Space Research, 50(12), pp. 1666-1686. (doi:10.1016/j.asr.2012.05.008)

Conference or Workshop Item

Pickersgill, A.E. , Lee, M.R. , Daly, L., Mark, D.F. and IODP-ICDP Expedition 2017, (2017) Planar Features (Lamellar Subgrains) in Feldspar from the Chicxulub Impact Structure. 80th Annual Meeting of the Meteoritical Society, Santa Fe, NM, USA, 23-28 Jul 2017.

Pickersgill, A.E. , Lee, M.R. , Daly, L. and Mark, D.F. (2017) Shock Metamorphism in Feldspar from the Chicxulub Impact Structure. 1st British Planetary Science Congress, Glasgow, UK, 3-5 Dec 2017.

This list was generated on Sat Feb 16 20:19:47 2019 GMT.