Microelectronics Lab (meLAB) - Research     

Overview: Building miniaturised electronic systems for ubiquitous sensing, computing and perception.

Research interests:

Spintronics and Magnetic Sensors

Various spintronic and magnetic devices including Hall effect, Giant Magnetoresistance (GMR), Tunnelling magnetoresistance (TMR),  nuclear magnetic resonance (NMR) and spin-Hall nano-oscillators (SHNO).  

K.M. Lei, H. Heidari et al., “A handheld high-sensitivity micro-NMR CMOS platform with stabilization for multi-type biological/chemical assays” IEEE J. Solid-State Circuits, 52:1, 2017.
V. Nabaei, N. Chandrawati, H. Heidari, "Magnetic biosensors: Modelling and simulation", Biosensors & Bioelectronics, 103, pp. 69-86, 2018. (pdf)
H. Heidari, et al., “CMOS vertical Hall magnetic sensors on flexible substrate” IEEE Sensors J., 16(24) 8736-8743, 2016.
Z. Yin, E. Bonizzoni and H. Heidari, "Magnetoresistive Biosensors for On-Chip Detection and Localization of Paramagnetic Particles," in IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, vol. 2, no. 3, pp. 179-185, Sept. 2018.
S. Zuo, K. Nazarpour, and H. Heidari, “High-Performance Tunnelling Magnetoresistors for Next Generation Spintronics”, in IEEE Electron Device Letters, 2018.

Microelectronics Design

We are working on the CMOS sensor interfaces circuits, allowing them to be manufactured as integrated Analog Front-End (AFE) including various circuits building blocks e.g. analogue-to-digital converters (ADC) and DC-DC converters for low-power and high-speed electronics systems.

H. Heidari, et al., “A CMOS current-mode magnetic Hall sensor with integrated front-end.” IEEE Trans. Circuits and Systems I: Regular Papers, 11(4), 2015. 
H. Fan, J. Li, Q. Feng, H. Sun and H.Heidari, "Exploiting Smallest Error to Calibrate Non-Linearity in SAR Adcs," in IEEE Access, vol. 6, pp. 42930-42940, 2018.
K. O. Htet, H. Fan and H. Heidari, "Switched-Capacitor DC-DC Converter for Miniaturised Wearable Systems," IEEE Int. Symposium on Circuits and Systems (ISCAS), 2018, pp. 1-5.
H. Fan et al., "A 4-Channel 12-Bit High-Voltage Radiation-Hardened Digital-to-Analog Converter for Low Orbit Satellite Applications," in IEEE Transactions on Circuits and Systems I: Regular Papers, 2018.

Wearable and Implantable Electronics

We are also working on the wearable and implantable electronic technologies such as Magnetomyography (MMG) and Magnetoencephalography (MEG). 

H. Heidari, S. Zuo, A. Krasoulis, and K. Nazarpour, “CMOS Magnetic Sensors for Wearable Magnetomyography,” in 40th Int. Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018.

Energy Harvesting

Our research on energy harvesting devices includes Photovoltaic (PV) cells and wireless power transmission (PWT).

K. O. Htet, R. Ghannam, Q. H. Abbasi and H. Heidari, "Power Management Using Photovoltaic Cells for Implantable Devices," in IEEE Access, vol. 6, pp. 42156-42164, 2018.
J. Zhao, R. Ghannam, Q. Abbasi, M. Imran and H.Heidari, Simulation of Photovoltaic Cells for Implantable Sensory Applications, in Proc. IEEE SENSORS Conf., 2018
meLAB founded in July 2017, aims to promote and support engineering and physical science research in microelectronics design, spintronics, magnetic sensors, and energy harvesting. Our research is broadly ranging from theoretical, simulation, design, fabrication and experimental work in fundamental physics to applications of wearable and implantable electronics. 

First published: 30 November 2018