Artery-brain circuits of atherosclerosis by Professor Tomasz Guzik

Neuroimmune cardiovascular interfaces control atherosclerosis

Sarajo K. MohantaLi PengYuanfang LiShu LuTing SunLorenzo CarnevaleMarialuisa PerrottaZhe MaBenjamin FörsteraKaren StanicChuankai ZhangXi ZhangPiotr SzczepaniakMariaelvy BianchiniBorhan R. SaeedRaimondo CarnevaleDesheng HuRyszard NosalskiFabio PallanteMichael BeerDonato SantovitoAli ErtürkThomas C. MettenleiterBarbara G. KluppRemco T. A. MegensSabine SteffensJaroslav PelisekHans-Henning EcksteinRobert KleemannLivia HabenichtZiad MallatJean-Baptiste MichelJürgen BernhagenMartin DichgansGiuseppe D’AgostinoTomasz J. GuzikPeder S. OlofssonChangjun YinChristian WeberGiuseppe LemboDaniela Carnevale & Andreas J. R. Habenicht

Prof Tom Guzik Lab has provided a significant contribution to the discovery of artery-brain circuits of atherosclerosis.

Link to Paper


Atherosclerotic plaques develop in the inner intimal layer of arteries and can cause heart attacks and strokes. As plaques lack innervation, the effects of neuronal control on atherosclerosis remain unclear. However, the immune system responds to plaques by forming leukocyte infiltrates in the outer connective tissue coat of arteries (the adventitia).


The nervous and vascular systems interact at multiple levels. During ontogeny, mutually acting guidance cues synchronize morphogenesis of the peripheral nervous system (PNS) and blood vessels. In adult organisms, the central nervous system (CNS) and blood vessels form various blood–brain barriers, and blood-vessel-derived molecules regulate axon growth and angiogenesis.

Delineation of adventitial axonogenesis

Neurofilament-200-positive (NF200+) axons and axon bundles were abundant in the adventitia of aged wild-type (WT) and apolipoprotein-E-deficient (Apoe−/−) mice (Figs. 1 and 2 and Extended Data Figs. 14).


First published: 16 May 2022