Dr Peter Bailey
- Senior Lecturer in Cancer Systems Biology (Therapeutic Science Research)
telephone:
0141 330 2306
email:
Peter.Bailey.2@glasgow.ac.uk
Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, G61 1QH
Publications
2023
Zhou, X. et al. (2023) Persister cell phenotypes contribute to poor patient outcomes after neoadjuvant chemotherapy in PDAC. Nature Cancer, (doi: 10.1038/s43018-023-00628-6) (Early Online Publication)
Krug, J. et al. (2023) N-glycosylation regulates intrinsic IFN-γ resistance in colorectal cancer: implications for immunotherapy. Gastroenterology, 164(3), 392-406.e5. (doi: 10.1053/j.gastro.2022.11.018) (PMID:36402190)
Bailey, P. , Zhou, X., An, J., Peccerella, T., Hu, K., Springfeld, C., Büchler, M. and Neoptolemos, J. P. (2023) Refining the treatment of pancreatic cancer from big data to improved individual survival. Function, 4(3), zqad011. (doi: 10.1093/function/zqad011) (PMID:37168490) (PMCID:PMC10165547)
2022
Dings, M. P.G. et al. (2022) Estrogen-related receptor alpha drives mitochondrial biogenesis and resistance to neoadjuvant chemoradiation in esophageal cancer. Cell Reports Medicine, 3(11), 100802. (doi: 10.1016/j.xcrm.2022.100802) (PMID:36334593) (PMCID:PMC9729822)
D'Agosto, S. et al. (2022) Loss of FGFR4 promotes the malignant phenotype of PDAC. Oncogene, 41(38), pp. 4371-4384. (doi: 10.1038/s41388-022-02432-5) (PMID:35963908) (PMCID:PMC9481460)
Zeng, S. et al. (2022) CDK7 inhibition augments response to multidrug chemotherapy in pancreatic cancer. Journal of Experimental and Clinical Cancer Research, 41, 241. (doi: 10.1186/s13046-022-02443-w) (PMID:35945614) (PMCID:PMC9364549)
Bijlsma, M. F., Bailey, P. J. and Stemmler, M. P. (2022) Editorial: translational insights into pancreatic ductal adenocarcinoma. Frontiers in Cell and Developmental Biology, 10, 875836. (doi: 10.3389/fcell.2022.875836) (PMID:35433705) (PMCID:PMC9012582)
Cattolico, C., Bailey, P. and Barry, S. T. (2022) Modulation of type I interferon responses to influence tumor-immune cross talk in PDAC. Frontiers in Cell and Developmental Biology, 10, 816517. (doi: 10.3389/fcell.2022.816517) (PMID:35273962) (PMCID:PMC8902310)
Schreyer, D., Neoptolemos, J. P., Barry, S. T. and Bailey, P. J. (2022) Deconstructing pancreatic cancer using next generation-omic technologies–from discovery to knowledge-guided platforms for better patient management. Frontiers in Cell and Developmental Biology, 9, 795735. (doi: 10.3389/fcell.2021.795735) (PMID:35096825) (PMCID:PMC8793685)
2021
Xu, Z. et al. (2021) Clinical impact of molecular subtyping of pancreatic cancer. Frontiers in Cell and Developmental Biology, 9, 743908. (doi: 10.3389/fcell.2021.743908) (PMID:34805152) (PMCID:PMC8603393)
Al-Fatlawi, A. et al. (2021) Deep learning improves pancreatic cancer diagnosis using RNA-based variants. Cancers, 13(11), 2654. (doi: 10.3390/cancers13112654) (PMID:34071263) (PMCID:PMC8199344)
Lakis, V. et al. (2021) DNA methylation patterns identify subgroups of pancreatic neuroendocrine tumors with clinical association. Communications Biology, 4, 155. (doi: 10.1038/s42003-020-01469-0) (PMID:33536587) (PMCID:PMC7859232)
Dreyer, S. B. et al. (2021) Targeting DNA damage response and replication stress in pancreatic cancer. Gastroenterology, 160(1), pp. 362-377. (doi: 10.1053/j.gastro.2020.09.043) (PMID:33039466) (PMCID:PMC8167930)
2020
McAllister, M., Constancio, V., Patek, S., Gan, H., Bailey, P. , Wheadon, H. , Underwood, M., Leung, H. and Edwards, J. (2020) Inflammatory infiltration is associated with AR expression and poor prognosis in hormone naïve prostate cancer. Prostate, 80(15), pp. 1353-1364. (doi: 10.1002/pros.24064) (PMID:32846021)
Bailey, M. H. et al. (2020) Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples. Nature Communications, 11, 4748. (doi: 10.1038/s41467-020-18151-y) (PMID:32958763) (PMCID:PMC7505971)
Li, C. H. et al. (2020) Sex differences in oncogenic mutational processes. Nature Communications, 11, 4330. (doi: 10.1038/s41467-020-17359-2) (PMID:32859912) (PMCID:PMC7455744)
Dreyer, S. B. et al. (2020) Precision oncology in surgery: patient selection for operable pancreatic cancer. Annals of Surgery, 272(2), pp. 366-376. (doi: 10.1097/SLA.0000000000003143) (PMID:32675551) (PMCID:PMC7373491)
Brunton, H. et al. (2020) HNF4A and GATA6 loss reveals therapeutically actionable subtypes in pancreatic cancer. Cell Reports, 31(6), 107625. (doi: 10.1016/j.celrep.2020.107625) (PMID:32402285)
Calabrese, C. et al. (2020) Genomic basis for RNA alterations in cancer. Nature, 578(7793), pp. 129-136. (doi: 10.1038/s41586-020-1970-0) (PMID:32025019) (PMCID:PMC7054216)
The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, et al. (2020) Pan-cancer analysis of whole genomes. Nature, 578(7793), pp. 82-93. (doi: 10.1038/s41586-020-1969-6) (PMID:32025007) (PMCID:PMC7025898)
Jiao, W. et al. (2020) A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns. Nature Communications, 11, 728. (doi: 10.1038/s41467-019-13825-8) (PMID:32024849) (PMCID:PMC7002586)
Zhang, Y. et al. (2020) High-coverage whole-genome analysis of 1220 cancers reveals hundreds of genes deregulated by rearrangement-mediated cis-regulatory alterations. Nature Communications, 11, 736. (doi: 10.1038/s41467-019-13885-w) (PMID:32024823) (PMCID:PMC7002524)
Maniati, E. et al. (2020) Mouse ovarian cancer models recapitulate the human tumor microenvironment and patient response to treatment. Cell Reports, 30(2), 525-540.e7. (doi: 10.1016/j.celrep.2019.12.034) (PMID:31940494) (PMCID:PMC6963791)
2019
Tandon, M. et al. (2019) Prolactin promotes fibrosis and pancreatic cancer progression. Cancer Research, 79(20), pp. 5316-5327. (doi: 10.1158/0008-5472.CAN-18-3064) (PMID:31395607) (PMCID:PMC6801092)
Jackstadt, R. et al. (2019) Epithelial NOTCH signaling rewires the tumor microenvironment of colorectal cancer to drive poor-prognosis subtypes and metastasis. Cancer Cell, 36(3), 319-336.e7. (doi: 10.1016/j.ccell.2019.08.003) (PMID:31526760) (PMCID:PMC6853173)
Reader, C. S. et al. (2019) The integrin αvβ6 drives pancreatic cancer through diverse mechanisms and represents an effective target for therapy. Journal of Pathology, 249(3), pp. 332-342. (doi: 10.1002/path.5320) (PMID:31259422) (PMCID:PMC6852434)
Collisson, E. A., Bailey, P. , Chang, D. K. and Biankin, A. V. (2019) Molecular subtypes of pancreatic cancer. Nature Reviews Gastroenterology and Hepatology, 16, pp. 207-220. (doi: 10.1038/s41575-019-0109-y) (PMID:30718832)
2018
Novo, D. et al. (2018) Mutant p53s generate pro-invasive niches by influencing exosome podocalyxin levels. Nature Communications, 9, 5069. (doi: 10.1038/s41467-018-07339-y) (PMID:30498210) (PMCID:PMC6265295)
Veenstra, V.L. et al. (2018) ADAM12 is a circulating marker for stromal activation in pancreatic cancer and predicts response to chemotherapy. Oncogenesis, 7, 87. (doi: 10.1038/s41389-018-0096-9) (PMID:30442938) (PMCID:PMC6237826)
Candido, J. B. et al. (2018) CSF1R+ macrophages sustain pancreatic tumor growth through T cell suppression and maintenance of key gene programs that define the squamous subtype. Cell Reports, 23(5), pp. 1448-1460. (doi: 10.1016/j.celrep.2018.03.131) (PMID:29719257) (PMCID:PMC5946718)
Dreyer, S.B., Jamieson, N.B. , Upstill-Goddard, R., Bailey, P.J. , McKay, C.J., Australian Pancreatic Cancer Genome Initiative, , Biankin, A.V. and Chang, D.K. (2018) Defining the molecular pathology of pancreatic body and tail adenocarcinom. British Journal of Surgery, 105(2), e183-e191. (doi: 10.1002/bjs.10772) (PMID:29341146) (PMCID:PMC5817249)
2017
Balachandran, V. P. et al. (2017) Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature, 551, pp. 512-516. (doi: 10.1038/nature24462) (PMID:29132146) (PMCID:PMC6145146)
Scarpa, A. et al. (2017) Corrigendum: Whole-genome landscape of pancreatic neuroendocrine tumours. Nature, 550(7677), p. 548. (doi: 10.1038/nature24026) (PMID:28953865)
Raphael, B. J. et al. (2017) Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell, 32(2), 185-203.e13. (doi: 10.1016/j.ccell.2017.07.007) (PMID:28810144) (PMCID:PMC5964983)
Feigin, M. E. et al. (2017) Recurrent noncoding regulatory mutations in pancreatic ductal adenocarcinoma. Nature Genetics, 49(6), pp. 825-833. (doi: 10.1038/ng.3861) (PMID:28481342) (PMCID:PMC5659388)
Johns, A. L. et al. (2017) Lost in translation: returning germline genetic results in genome-scale cancer research. Genome Medicine, 9, 41. (doi: 10.1186/s13073-017-0430-4) (PMID:28454591) (PMCID:PMC5408494)
Dreyer, S. B., Chang, D. K. , Bailey, P. and Biankin, A. V. (2017) Pancreatic cancer genomes: implications for clinical management and therapeutic development. Clinical Cancer Research, 23(7), pp. 1638-1646. (doi: 10.1158/1078-0432.CCR-16-2411) (PMID:28373362)
Pishvaian, M. J., Biankin, A. V. , Bailey, P. , Chang, D. K. , Laheru, D., Wolfgang, C. L. and Brody, J. R. (2017) BRCA2 secondary mutation-mediated resistance to platinum and PARP inhibitor-based therapy in pancreatic cancer. British Journal of Cancer, 116, pp. 1021-1026. (doi: 10.1038/bjc.2017.40) (PMID:28291774)
Scarpa, A. et al. (2017) Whole-genome landscape of pancreatic neuroendocrine tumours. Nature, 543(7643), pp. 65-71. (doi: 10.1038/nature21063) (PMID:28199314)
Vallejo, A. et al. (2017) An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer. Nature Communications, 8, 14294. (doi: 10.1038/ncomms14294) (PMID:28220783) (PMCID:PMC5321758)
Humphris, J. L. et al. (2017) Hypermutation in pancreatic cancer. Gastroenterology, 152(1), 68-74.e2. (doi: 10.1053/j.gastro.2016.09.060) (PMID:27856273)
2016
Roy, N. et al. (2016) PDX1 dynamically regulates pancreatic ductal adenocarcinoma initiation and maintenance. Genes and Development, 30(24), pp. 2669-2683. (doi: 10.1101/gad.291021.116) (PMID:28087712)
Bailey, P. et al. (2016) Exploiting the neoantigen landscape for immunotherapy of pancreatic ductal adenocarcinoma. Scientific Reports, 6, 35848. (doi: 10.1038/srep35848) (PMID:27762323) (PMCID:PMC5071896)
Milevskiy, M. J.G. et al. (2016) Long-range regulators of the lncRNA HOTAIR enhance its prognostic potential in breast cancer. Human Molecular Genetics, 25(15), pp. 3269-3283. (doi: 10.1093/hmg/ddw177) (PMID:27378691) (PMCID:PMC5179926)
Steele, C. W. et al. (2016) CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell, 29(6), pp. 832-845. (doi: 10.1016/j.ccell.2016.04.014) (PMID:27265504) (PMCID:PMC4912354)
Bailey, P. et al. (2016) Genomic analyses identify molecular subtypes of pancreatic cancer. Nature, 531(7592), pp. 47-52. (doi: 10.1038/nature16965) (PMID:26909576)
Gingras, M.-C. et al. (2016) Ampullary cancers harbor ELF3 tumor suppressor gene mutations and exhibit frequent WNT dysregulation. Cell Reports, 14(4), pp. 907-919. (doi: 10.1016/j.celrep.2015.12.005) (PMID:26804919) (PMCID:PMC4982376)
2015
Saunus, J. M. et al. (2015) Integrated genomic and transcriptomic analysis of human brain metastases identifies alterations of potential clinical significance. Journal of Pathology, 237(3), pp. 363-378. (doi: 10.1002/path.4583) (PMID:26172396)
Waddell, N. et al. (2015) Whole genomes redefine the mutational landscape of pancreatic cancer. Nature, 518(7540), pp. 495-501. (doi: 10.1038/nature14169) (PMID:25719666) (PMCID:PMC4523082)
Miller, B. W. et al. (2015) Targeting the LOX/hypoxia axis reverses many of the features that make pancreatic cancer deadly: inhibition of LOX abrogates metastasis and enhances drug efficacy. EMBO Molecular Medicine, 7, pp. 1063-1076. (doi: 10.15252/emmm.201404827) (PMID:26077591) (PMCID:PMC4551344)
Patch, A.-M. et al. (2015) Whole–genome characterization of chemoresistant ovarian cancer. Nature, 521(7553), pp. 489-494. (doi: 10.1038/nature14410) (PMID:26017449)
2014
Nones, K. et al. (2014) Genome-wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET signaling. International Journal of Cancer, 135(5), pp. 1110-1118. (doi: 10.1002/ijc.28765) (PMID:24500968)
Oh, T. G. et al. (2014) PRMT2 and RORγ expression are associated with breast cancer survival outcomes. Molecular Endocrinology, 28(7), pp. 1166-1185. (doi: 10.1210/me.2013-1403) (PMID:24911119) (PMCID:PMC5414829)
Nones, K. et al. (2014) Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nature Communications, 5, 5224. (doi: 10.1038/ncomms6224) (PMID:25351503) (PMCID:PMC4596003)
Articles
Zhou, X. et al. (2023) Persister cell phenotypes contribute to poor patient outcomes after neoadjuvant chemotherapy in PDAC. Nature Cancer, (doi: 10.1038/s43018-023-00628-6) (Early Online Publication)
Krug, J. et al. (2023) N-glycosylation regulates intrinsic IFN-γ resistance in colorectal cancer: implications for immunotherapy. Gastroenterology, 164(3), 392-406.e5. (doi: 10.1053/j.gastro.2022.11.018) (PMID:36402190)
Bailey, P. , Zhou, X., An, J., Peccerella, T., Hu, K., Springfeld, C., Büchler, M. and Neoptolemos, J. P. (2023) Refining the treatment of pancreatic cancer from big data to improved individual survival. Function, 4(3), zqad011. (doi: 10.1093/function/zqad011) (PMID:37168490) (PMCID:PMC10165547)
Dings, M. P.G. et al. (2022) Estrogen-related receptor alpha drives mitochondrial biogenesis and resistance to neoadjuvant chemoradiation in esophageal cancer. Cell Reports Medicine, 3(11), 100802. (doi: 10.1016/j.xcrm.2022.100802) (PMID:36334593) (PMCID:PMC9729822)
D'Agosto, S. et al. (2022) Loss of FGFR4 promotes the malignant phenotype of PDAC. Oncogene, 41(38), pp. 4371-4384. (doi: 10.1038/s41388-022-02432-5) (PMID:35963908) (PMCID:PMC9481460)
Zeng, S. et al. (2022) CDK7 inhibition augments response to multidrug chemotherapy in pancreatic cancer. Journal of Experimental and Clinical Cancer Research, 41, 241. (doi: 10.1186/s13046-022-02443-w) (PMID:35945614) (PMCID:PMC9364549)
Bijlsma, M. F., Bailey, P. J. and Stemmler, M. P. (2022) Editorial: translational insights into pancreatic ductal adenocarcinoma. Frontiers in Cell and Developmental Biology, 10, 875836. (doi: 10.3389/fcell.2022.875836) (PMID:35433705) (PMCID:PMC9012582)
Cattolico, C., Bailey, P. and Barry, S. T. (2022) Modulation of type I interferon responses to influence tumor-immune cross talk in PDAC. Frontiers in Cell and Developmental Biology, 10, 816517. (doi: 10.3389/fcell.2022.816517) (PMID:35273962) (PMCID:PMC8902310)
Schreyer, D., Neoptolemos, J. P., Barry, S. T. and Bailey, P. J. (2022) Deconstructing pancreatic cancer using next generation-omic technologies–from discovery to knowledge-guided platforms for better patient management. Frontiers in Cell and Developmental Biology, 9, 795735. (doi: 10.3389/fcell.2021.795735) (PMID:35096825) (PMCID:PMC8793685)
Xu, Z. et al. (2021) Clinical impact of molecular subtyping of pancreatic cancer. Frontiers in Cell and Developmental Biology, 9, 743908. (doi: 10.3389/fcell.2021.743908) (PMID:34805152) (PMCID:PMC8603393)
Al-Fatlawi, A. et al. (2021) Deep learning improves pancreatic cancer diagnosis using RNA-based variants. Cancers, 13(11), 2654. (doi: 10.3390/cancers13112654) (PMID:34071263) (PMCID:PMC8199344)
Lakis, V. et al. (2021) DNA methylation patterns identify subgroups of pancreatic neuroendocrine tumors with clinical association. Communications Biology, 4, 155. (doi: 10.1038/s42003-020-01469-0) (PMID:33536587) (PMCID:PMC7859232)
Dreyer, S. B. et al. (2021) Targeting DNA damage response and replication stress in pancreatic cancer. Gastroenterology, 160(1), pp. 362-377. (doi: 10.1053/j.gastro.2020.09.043) (PMID:33039466) (PMCID:PMC8167930)
McAllister, M., Constancio, V., Patek, S., Gan, H., Bailey, P. , Wheadon, H. , Underwood, M., Leung, H. and Edwards, J. (2020) Inflammatory infiltration is associated with AR expression and poor prognosis in hormone naïve prostate cancer. Prostate, 80(15), pp. 1353-1364. (doi: 10.1002/pros.24064) (PMID:32846021)
Bailey, M. H. et al. (2020) Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples. Nature Communications, 11, 4748. (doi: 10.1038/s41467-020-18151-y) (PMID:32958763) (PMCID:PMC7505971)
Li, C. H. et al. (2020) Sex differences in oncogenic mutational processes. Nature Communications, 11, 4330. (doi: 10.1038/s41467-020-17359-2) (PMID:32859912) (PMCID:PMC7455744)
Dreyer, S. B. et al. (2020) Precision oncology in surgery: patient selection for operable pancreatic cancer. Annals of Surgery, 272(2), pp. 366-376. (doi: 10.1097/SLA.0000000000003143) (PMID:32675551) (PMCID:PMC7373491)
Brunton, H. et al. (2020) HNF4A and GATA6 loss reveals therapeutically actionable subtypes in pancreatic cancer. Cell Reports, 31(6), 107625. (doi: 10.1016/j.celrep.2020.107625) (PMID:32402285)
Calabrese, C. et al. (2020) Genomic basis for RNA alterations in cancer. Nature, 578(7793), pp. 129-136. (doi: 10.1038/s41586-020-1970-0) (PMID:32025019) (PMCID:PMC7054216)
The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, et al. (2020) Pan-cancer analysis of whole genomes. Nature, 578(7793), pp. 82-93. (doi: 10.1038/s41586-020-1969-6) (PMID:32025007) (PMCID:PMC7025898)
Jiao, W. et al. (2020) A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns. Nature Communications, 11, 728. (doi: 10.1038/s41467-019-13825-8) (PMID:32024849) (PMCID:PMC7002586)
Zhang, Y. et al. (2020) High-coverage whole-genome analysis of 1220 cancers reveals hundreds of genes deregulated by rearrangement-mediated cis-regulatory alterations. Nature Communications, 11, 736. (doi: 10.1038/s41467-019-13885-w) (PMID:32024823) (PMCID:PMC7002524)
Maniati, E. et al. (2020) Mouse ovarian cancer models recapitulate the human tumor microenvironment and patient response to treatment. Cell Reports, 30(2), 525-540.e7. (doi: 10.1016/j.celrep.2019.12.034) (PMID:31940494) (PMCID:PMC6963791)
Tandon, M. et al. (2019) Prolactin promotes fibrosis and pancreatic cancer progression. Cancer Research, 79(20), pp. 5316-5327. (doi: 10.1158/0008-5472.CAN-18-3064) (PMID:31395607) (PMCID:PMC6801092)
Jackstadt, R. et al. (2019) Epithelial NOTCH signaling rewires the tumor microenvironment of colorectal cancer to drive poor-prognosis subtypes and metastasis. Cancer Cell, 36(3), 319-336.e7. (doi: 10.1016/j.ccell.2019.08.003) (PMID:31526760) (PMCID:PMC6853173)
Reader, C. S. et al. (2019) The integrin αvβ6 drives pancreatic cancer through diverse mechanisms and represents an effective target for therapy. Journal of Pathology, 249(3), pp. 332-342. (doi: 10.1002/path.5320) (PMID:31259422) (PMCID:PMC6852434)
Collisson, E. A., Bailey, P. , Chang, D. K. and Biankin, A. V. (2019) Molecular subtypes of pancreatic cancer. Nature Reviews Gastroenterology and Hepatology, 16, pp. 207-220. (doi: 10.1038/s41575-019-0109-y) (PMID:30718832)
Novo, D. et al. (2018) Mutant p53s generate pro-invasive niches by influencing exosome podocalyxin levels. Nature Communications, 9, 5069. (doi: 10.1038/s41467-018-07339-y) (PMID:30498210) (PMCID:PMC6265295)
Veenstra, V.L. et al. (2018) ADAM12 is a circulating marker for stromal activation in pancreatic cancer and predicts response to chemotherapy. Oncogenesis, 7, 87. (doi: 10.1038/s41389-018-0096-9) (PMID:30442938) (PMCID:PMC6237826)
Candido, J. B. et al. (2018) CSF1R+ macrophages sustain pancreatic tumor growth through T cell suppression and maintenance of key gene programs that define the squamous subtype. Cell Reports, 23(5), pp. 1448-1460. (doi: 10.1016/j.celrep.2018.03.131) (PMID:29719257) (PMCID:PMC5946718)
Dreyer, S.B., Jamieson, N.B. , Upstill-Goddard, R., Bailey, P.J. , McKay, C.J., Australian Pancreatic Cancer Genome Initiative, , Biankin, A.V. and Chang, D.K. (2018) Defining the molecular pathology of pancreatic body and tail adenocarcinom. British Journal of Surgery, 105(2), e183-e191. (doi: 10.1002/bjs.10772) (PMID:29341146) (PMCID:PMC5817249)
Balachandran, V. P. et al. (2017) Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature, 551, pp. 512-516. (doi: 10.1038/nature24462) (PMID:29132146) (PMCID:PMC6145146)
Scarpa, A. et al. (2017) Corrigendum: Whole-genome landscape of pancreatic neuroendocrine tumours. Nature, 550(7677), p. 548. (doi: 10.1038/nature24026) (PMID:28953865)
Raphael, B. J. et al. (2017) Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell, 32(2), 185-203.e13. (doi: 10.1016/j.ccell.2017.07.007) (PMID:28810144) (PMCID:PMC5964983)
Feigin, M. E. et al. (2017) Recurrent noncoding regulatory mutations in pancreatic ductal adenocarcinoma. Nature Genetics, 49(6), pp. 825-833. (doi: 10.1038/ng.3861) (PMID:28481342) (PMCID:PMC5659388)
Johns, A. L. et al. (2017) Lost in translation: returning germline genetic results in genome-scale cancer research. Genome Medicine, 9, 41. (doi: 10.1186/s13073-017-0430-4) (PMID:28454591) (PMCID:PMC5408494)
Dreyer, S. B., Chang, D. K. , Bailey, P. and Biankin, A. V. (2017) Pancreatic cancer genomes: implications for clinical management and therapeutic development. Clinical Cancer Research, 23(7), pp. 1638-1646. (doi: 10.1158/1078-0432.CCR-16-2411) (PMID:28373362)
Pishvaian, M. J., Biankin, A. V. , Bailey, P. , Chang, D. K. , Laheru, D., Wolfgang, C. L. and Brody, J. R. (2017) BRCA2 secondary mutation-mediated resistance to platinum and PARP inhibitor-based therapy in pancreatic cancer. British Journal of Cancer, 116, pp. 1021-1026. (doi: 10.1038/bjc.2017.40) (PMID:28291774)
Scarpa, A. et al. (2017) Whole-genome landscape of pancreatic neuroendocrine tumours. Nature, 543(7643), pp. 65-71. (doi: 10.1038/nature21063) (PMID:28199314)
Vallejo, A. et al. (2017) An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer. Nature Communications, 8, 14294. (doi: 10.1038/ncomms14294) (PMID:28220783) (PMCID:PMC5321758)
Humphris, J. L. et al. (2017) Hypermutation in pancreatic cancer. Gastroenterology, 152(1), 68-74.e2. (doi: 10.1053/j.gastro.2016.09.060) (PMID:27856273)
Roy, N. et al. (2016) PDX1 dynamically regulates pancreatic ductal adenocarcinoma initiation and maintenance. Genes and Development, 30(24), pp. 2669-2683. (doi: 10.1101/gad.291021.116) (PMID:28087712)
Bailey, P. et al. (2016) Exploiting the neoantigen landscape for immunotherapy of pancreatic ductal adenocarcinoma. Scientific Reports, 6, 35848. (doi: 10.1038/srep35848) (PMID:27762323) (PMCID:PMC5071896)
Milevskiy, M. J.G. et al. (2016) Long-range regulators of the lncRNA HOTAIR enhance its prognostic potential in breast cancer. Human Molecular Genetics, 25(15), pp. 3269-3283. (doi: 10.1093/hmg/ddw177) (PMID:27378691) (PMCID:PMC5179926)
Steele, C. W. et al. (2016) CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell, 29(6), pp. 832-845. (doi: 10.1016/j.ccell.2016.04.014) (PMID:27265504) (PMCID:PMC4912354)
Bailey, P. et al. (2016) Genomic analyses identify molecular subtypes of pancreatic cancer. Nature, 531(7592), pp. 47-52. (doi: 10.1038/nature16965) (PMID:26909576)
Gingras, M.-C. et al. (2016) Ampullary cancers harbor ELF3 tumor suppressor gene mutations and exhibit frequent WNT dysregulation. Cell Reports, 14(4), pp. 907-919. (doi: 10.1016/j.celrep.2015.12.005) (PMID:26804919) (PMCID:PMC4982376)
Saunus, J. M. et al. (2015) Integrated genomic and transcriptomic analysis of human brain metastases identifies alterations of potential clinical significance. Journal of Pathology, 237(3), pp. 363-378. (doi: 10.1002/path.4583) (PMID:26172396)
Waddell, N. et al. (2015) Whole genomes redefine the mutational landscape of pancreatic cancer. Nature, 518(7540), pp. 495-501. (doi: 10.1038/nature14169) (PMID:25719666) (PMCID:PMC4523082)
Miller, B. W. et al. (2015) Targeting the LOX/hypoxia axis reverses many of the features that make pancreatic cancer deadly: inhibition of LOX abrogates metastasis and enhances drug efficacy. EMBO Molecular Medicine, 7, pp. 1063-1076. (doi: 10.15252/emmm.201404827) (PMID:26077591) (PMCID:PMC4551344)
Patch, A.-M. et al. (2015) Whole–genome characterization of chemoresistant ovarian cancer. Nature, 521(7553), pp. 489-494. (doi: 10.1038/nature14410) (PMID:26017449)
Nones, K. et al. (2014) Genome-wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET signaling. International Journal of Cancer, 135(5), pp. 1110-1118. (doi: 10.1002/ijc.28765) (PMID:24500968)
Oh, T. G. et al. (2014) PRMT2 and RORγ expression are associated with breast cancer survival outcomes. Molecular Endocrinology, 28(7), pp. 1166-1185. (doi: 10.1210/me.2013-1403) (PMID:24911119) (PMCID:PMC5414829)
Nones, K. et al. (2014) Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nature Communications, 5, 5224. (doi: 10.1038/ncomms6224) (PMID:25351503) (PMCID:PMC4596003)
Grants
Grants and Awards listed are those received whilst working with the University of Glasgow.
- Deciphering the molecular landscape of radiotherapy resistance in patients with high risk HNSCC
Cancer Research UK
2021 - 2022
- Integrating digital pathology and genomic analysis to optimise and streamline colonic surveillance within the Scottish Bowel Screening Programme (SBoSP) to enable early detection of Colorectal neoplasia.
Innovate UK
2020 - 2023
- PancREatic Cancer OrganoiDs rEsearch Network
European Commission
2019 - 2023
Supervision
- Cattolico, Carlotta
Pharmacogenomic analysis of pancreatic cancer organoids – development of new immuno-oncology therapies for pancreatic cancer