Professor David Maxwell

  • Professor of Neuroanatomy (Centre for Neuroscience)
  • Associate - Life Sciences (School of Life Sciences)

telephone: 01413306455
email: David.Maxwell@glasgow.ac.uk

Research interests

Regulation of synaptic transmission in the spinal cord by monoaminergic systems and spinal interneurons. Spinal mechanisms of neuropathic pain. Organisation of spinal interneurons in reflex pathways.

Descending and segmental control of primary afferent transmission in the spinal cord.
The contribution of spinal mechanisms to neuropathic pain.
Organisation of neurotransmitters and receptors in the dorsal and ventral horn.

Monoamines and neuronal transmission in the spinal cord

Dr D.J. Maxwell.

My present research interests are focused on various aspects of spinal cord circuitry. I use an approach which combines electrophysiological and morphological techniques. Much of this work is performed in collaboration with other laboratories in Glasgow and Sweden. I am a member of The Spinal Cord Research Group , in Glasgow. The work is funded by the Wellcome Trust and the Robertson Trust.

(1) Synaptic bases of monoaminergic inhibition of spinal interneurons

A confocal microscopic image of a spinal interneuron.  

 

Hyperactivity of nerve cells in the spinal cord contributes to the exaggerated reflexes which occur in spasticity. Pathways containing monoamine transmitters pass from the brain to the spinal cord and control the activity of spinal neurons but the basis of this control is poorly understood. Interneurons in the spinal cord are selectively controlled by these descending fibres and it is these neurons which probably become hyperactive in spastic patients, since drugs which mimic the actions of monoamines depress their activity and also reduce spasticity. The aim of this project is to investigate the neuronal circuitry underlying these phenomena by filling various classes of physiologically characterized spinal interneurons with fluorescent dyes or enzymes and then labelling the fibres descending from the brain with antibodies that recognise monoamine neurotransmitters. Contacts between descending fibres and interneurons are investigated with confocal laser scanning microscopy and electron microscopy. It is anticipated that this approach will provide a better basis for the development of new drugs for the treatment of spasticity. Reference:Maxwell, D.J., Jankowska, E.J., Dolk, S., Riddell, J.S., Yin, X.-K. and Dahlström, A. (1995) Ultrastructural and confocal microscope studies of neurotransmitters in boutons which contact interneurons in pathways from muscle afferents. Brain Research Association Abstracts, 12, 27.4.

(2) Control of transmission through the spinocerebellar tract 

A group of neurons which form a component of the spinocerebellar tract, is located in the dorsal horn of the lumbar spinal cord. This pathway receives information from muscle afferents and cutaneous afferents and, in addition to supplying the cerebellum with information, has a role in the conscious perception of limb position. Although functional properties and morphology of cells belonging the pathway have been described in some detail, knowledge about the organization and neurochemistry of synaptic connections of these neurons is still sparse. The principal objective of this project is to elucidate control mechanisms which influence transmission through the this pathway. We are currently investigating immunocytochemical properties of axons originating from various regions of the brain and their synaptic relationships with identified spinocerebellar tract neurons. References:Jankowska, E., Maxwell, D.J., Dolk, S., Krutki, P. Belichenko, P.V. and Dahlström, A. (1995) Contacts between serotoninergic fibres and dorsal horn spinocerebellar tract neurones in the cat and rat; a confocal microscopic study. Neuroscience, 67,477-487. Maxwell, D.J. and Jankowska, E. (1996) Synaptic relations between serotonin-immunoreactive axons and dorsal horn spinocerebellar tract cells in the cat spinal cord. Neuroscience, 70, 247-253.

(3) Organization of terminations of primary afferent fibres in the spinal grey matter. 

The principal aim of this project is to investigate the various ways in which information coming into the spinal cord via primary afferent fibres is modified at the first synapse in the cord. Such knowledge is important if we are to improve our understanding of pain mechanisms and abnormalities of posture and movement. Primary afferents originating from muscles and skin are stained by various means (e.g. by intra-axonal labelling with enzymes passed through microelectrodes) and their terminations are examined with light and electron microscopy. Immunocytochemistry is combined with this approach to investigate the chemical nature of structures which are pre- and post-synaptic to primary afferent axons.

References:Maxwell, D. J. and Réthelyi, M. (1987) Ultrastructure and synaptic connections of cutaneous afferent fibres in the spinal cord. Trends in Neuroscience, 10, 117-123. Maxwell, D.J., Christie, W.M., Short, A.D. and Brown, A.G. (1990) Direct observations of synapses between GABA- immunoreactive boutons and muscle afferent terminals in lamina VI of the cat's spinal cord. Brain Research 530, 215-222. Figure : An electrophysiological record from a primary afferent axon (A). The axon was labelled with an enzyme and its fine ramifications were viewed with a light microscope (B). The same axon was studied with an electron microscope (*) and it formed synapses (arrow) with other neurons (C).  

   

Recent references 

1. Maxwell, D.J., Todd,A.J. and Kerr, R. (1995) Colocalization of glycine and GABA in synapses on spinomedullary neurons. Brain Research 690, 127-132.  

2. Maxwell, D.J. and Jankowska, E. (1996) Synaptic relations between serotonin-immunoreactive axons and dorsal horn spinocerebellar tract cells in the cat spinal cord. Neuroscience, 70, 247-253.   3. McGonigle, D.J., Maxwell, D.J., Shehab, S.A.S. and Kerr,R. Evidence for the presence of neurokinin-1 receptors on dorsal horn spinocerebellar tract cells in the rat. Brain Research, (1996) 742, 1-9.

4. Maxwell, L. Maxwell, D.J., Neilson, M. and Kerr, R.  A confocal microscopic survey of serotoninergic axons in the lumbar spinal cord of the rat: colocalization with glutamate decarboxylase and neuropeptides. Neuroscience (1996) 75: 471-480

5. Maxwell, D.J., Kerr, R., Jankowska, E. and Riddell, J.S. Synaptic connections of dorsal horn group II interneurons: synapses formed with the interneurons and by their axon collaterals. J.Comp. Neurol. (1997) 380: 51-69

6. Jankowska E., Maxwell, D.J. Dolk, S. and  Dahlström, A. A confocal and electron microscopic study of contacts between 5-HT fibres and feline dorsal horn interneurons in pathways from muscle afferents  J.Comp. Neurol. (1997) 387, 430-438

7. Pollock, R., Kerr, R. and Maxwell, D.J. An immunocyochemical investigation of the relationship between substance P and the neurokinin-1 receptor in the lateral horn of the rat thoracic spinal cord. Brain Res. (1997) 777, 22-30

8. Spike, R.C., Kerr, R., Maxwell, D.J. and Todd, A.J. GluR1 and GluR2/3 subunits of the AMPA-type glutamate receptor are associated with particular types of neuron in laminae I-III of the spinal dorsal horn of the rat, Eur.  J.  Neurosci. (1998) 10,324-333.  


Grants

Grants and Awards listed are those received whilst working with the University of Glasgow.

  • Contribution of Spinal Commissural Circuits to Upper Limb Movements
    Biotechnology and Biological Sciences Research Council
    2017 - 2020
     
  • Selection and generation of limb movements by a combination of multifunctional and specialized spinal interneurons
    National Science Foundation
    2014 - 2018
     
  • Pre-motor neuronal networks , from connectivity to function
    Biotechnology and Biological Sciences Research Council
    2013 - 2017
     
  • Corticospinal reorganisation after experimental stroke.
    Neurosciences Foundation
    2012 - 2013
     
  • Neuroscience: Organisation and neurochemical properties of intersegmental interneurons in the lumbar enlargement of the adult rat (in press)
    The Carnegie Trust for the Universities of Scotland
    2010 - 2011
     
  • Confocal microscopic studies in Neuroscience
    Wellcome Trust
    2010 - 2013
     
  • A quantitative description of glycinergic circuits in the ventral horn of the lumbar spinal cord.
    Wellcome Trust
    2009 - 2012
     
  • Chemical and ultrastructural characterization of the caudal most spinal cord
    Hungarian Ministry of Education
    2003 - 2006
     
  • The actions of group II interneurones in spinal cord circuitry controlling locomotion
    Wellcome Trust
    2003 - 2007
     
  • Confocal microscopic studies in the spinal cord
    Wellcome Trust
    2002 - 2005
     
  • An Investigation of Spinal Cord Mechanisms Underlying Neuropathic Pain in Nerve Injury Models in the Rat
    Wellcome Trust
    2000 - 2006
     

Additional information

Invited International Presentations

  • 2006: London, England - Physiological Society Symposium - Descending control as a determinent of the pain experience: sensory, autonomic and motor aspects.
  • 2004: Glasgow, Scotland - Organiser and Chair, Physiological Society Symoposium - Genetic and Molecular Approaches to Investigate Spinal Cord Circuitry
  • 2004: Pecs, Hungary - Plenary lecturer, Hungarian Society for Nuroscience
  • 2003: Cambridge, England - British Psychopharmacological Society workshop - Immunocytochemical techniques for the identification of receptors

Professional Learned Society

  • 1998 - present: Anatomical Society of Great Britain and Ireland - Member
  • 1998 - present: Society for Neuroscience - Member
  • 1992 - present: British Neuroscience Association - Member
  • 1984 - present: Physiological Society - Member

Publications

List by: Type | Date

Jump to: 2016 | 2015 | 2014 | 2013 | 2012 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2000 | 1999
Number of items: 43.

2016

Mitchell, E. J., Dewar, D. and Maxwell, D. J. (2016) Is remodelling of corticospinal tract terminations originating in the intact hemisphere associated with recovery following transient ischaemic stroke in the rat? PLoS ONE, 11(3), e0152176. (doi:10.1371/journal.pone.0152176) (PMID:27014870) (PMCID:PMC4807821)

Mitchell, E. J., McCallum, S., Dewar, D. and Maxwell, D. (2016) Corticospinal and reticulospinal contacts on cervical commissural and long descending propriospinal neurons in the adult rat spinal cord; evidence for powerful reticulospinal connections. PLoS ONE, 11(3), e0152094. (doi:10.1371/journal.pone.0152094) (PMID:26999665) (PMCID:PMC4801400)

2015

Huma, Z., Ireland, K. and Maxwell, D. J. (2015) The spino–bulbar–cerebellar pathway: activation of neurons projecting to the lateral reticular nucleus in the rat in response to noxious mechanical stimuli. Neuroscience Letters, 591, pp. 197-201. (doi:10.1016/j.neulet.2015.02.047) (PMID:25711799)

Huma, Z. and Maxwell, D. J. (2015) The spino-bulbar-cerebellar pathway: organization and neurochemical properties of spinal cells that project to the lateral reticular nucleus in the rat. Frontiers in Neuroanatomy, 9, 1. (doi:10.3389/fnana.2015.00001) (PMID:25657619) (PMCID:PMC4303139)

2014

Bhumbra, G. S., Bannatyne, B. A., Watanabe, M., Todd, A. J. , Maxwell, D. J. and Beato, M. (2014) The recurrent case for the Renshaw cell. Journal of Neuroscience, 34(38), pp. 12919-12932. (doi:10.1523/JNEUROSCI.0199-14.2014) (PMID:25232126) (PMCID:PMC4166169)

Huma, Z., Du Beau, A., Brown, C. and Maxwell, D. J. (2014) Origin and neurochemical properties of bulbospinal neurons projecting to the rat lumbar spinal cord via the medial longitudinal fasciculus and caudal ventrolateral medulla. Frontiers in Neural Circuits, 8(Art 40), pp. 1-14. (doi:10.3389/fncir.2014.00040)

2013

Beau, A.D., Shrestha, S.S., Bannatyne, B.A., Jalicy, S.M., Linnen, S. and Maxwell, D.J. (2013) Neurotransmitter phenotypes of descending systems in the rat lumbar spinal cord. Neuroscience, 227, pp. 67-69. (doi:10.1016/j.neuroscience.2012.09.037)

Brockett, E.F., Seenan, P.G., Bannatyne, B.A. and Maxwell, D.J. (2013) Ascending and descending propriospinal pathways between lumbar and cervical segments in the rat: evidence for a substantial ascending excitatory pathway. Neuroscience, 240, pp. 83-97. (doi:10.1016/j.neuroscience.2013.02.039)

Shrestha, S.S., Bannatyne, B.A., Jankowska, E., Hammar, I., Nilsson, E. and Maxwell, D.J. (2013) Inhibitory inputs to four types of spinocerebellar tract neurons in the cat spinal cord. Neuroscience, 226, pp. 253-269. (doi:10.1016/j.neuroscience.2012.09.015)

2012

Shrestha, S.S., Bannatyne, B.A., Jankowska, E., Hammar, I., Nilsson, E. and Maxwell, D.J. (2012) Excitatory inputs to four types of spinocerebellar tract neurons in the cat and the rat thoraco-lumbar spinal cord. Journal of Physiology, 590(7), pp. 1737-1755. (doi:10.1113/jphysiol.2011.226852)

2010

Liu, T.T., Bannatyne, B.A. and Maxwell, D.J. (2010) Organization and neurochemical properties of intersegmental interneurons in the lumbar enlargement of the adult rat. Neuroscience, 171(2), pp. 461-484. (doi:10.1016/j.neuroscience.2010.09.012)

Liu, T.T., Bannatyne, B., Jankowska, E. and Maxwell, D.J. (2010) Properties of axon terminals contacting intermediate zone excitatory and inhibitory premotor interneurons with monosynaptic input from group I and II muscle afferents. Journal of Physiology, 588(21), pp. 4217-4233. (doi:10.1113/jphysiol.2010.192211)

2009

Liu, T.T., Bannatyne, B.A., Jankowska, E. and Maxwell, D.J. (2009) Cholinergic terminals in the ventral horn of adult rat and cat: evidence that glutamate is a co-transmitter at putative interneuron synapses but not at central synapses of motoneurons. Neuroscience, 161(1), pp. 111-122. (doi:10.1016/j.neuroscience.2009.03.034)

Bannatyne, B.A., Liu, T.T., Hammar, I., Stecina, K., Jankowska, E. and Maxwell, D.J. (2009) Excitatory and inhibitory intermediate zone interneurons in pathways from feline group I and II afferents: differences in axonal projections and input. Journal of Physiology, 587(2), pp. 379-399. (doi:10.1113/jphysiol.2008.159129)

Jankowska, E., Bannatyne, B.A., Stecina, K., Hammar, I., Cabaj, A. and Maxwell, D.J. (2009) Commissural interneurons with input from group I and II muscle afferents in feline lumbar segments: neurotransmitters, projections and target cells. Journal of Physiology, 587(2), pp. 401-418. (doi:10.1113/jphysiol.2008.159236)

2008

Stecina, K., Jankowska, E., Cabaj, A., Pettersson, L.G., Bannatyne, B.A. and Maxwell, D.J. (2008) Premotor interneurones contributing to actions of feline pyramidal tract neurones on ipsilateral hindlimb motoneurones. Journal of Physiology, 586(2), pp. 557-574. (doi:10.1113/jphysiol.2007.145466)

2007

Maxwell, D.J., Belle, M.D., Cheunsuang, O., Stewart, A. and Morris, R. (2007) Morphology of inhibitory and excitatory interneurons in superficial laminae of the rat dorsal horn. Journal of Physiology, 584(2), pp. 521-533. (doi:10.1113/jphysiol.2007.140996)

Lindsay, K.A., Maxwell, D.J., Rosenberg, J.R. and Tucker, G. (2007) A new approach to reconstruction models of dendritic branching patterns. Mathematical Biosciences, 205(2), pp. 271-296. (doi:10.1016/j.mbs.2006.08.005)

Jankowska, E., Maxwell, D.J. and Bannatyne, B.A. (2007) On coupling and decoupling of spinal interneuronal networks. Archives Italiennes de Biologie, 145, pp. 235-250.

Polgar, E., Thomson, S., Maxwell, D., Al-Khater, K. and Todd, A. (2007) A population of large neurons in laminae III and IV of the rat spinal cord that have long dorsal dendrites and lack the neurokinin 1 receptor. European Journal of Neuroscience, 26, pp. 1587-1598. (doi:10.1111/j.1460-9568.2007.05793.x)

2006

Bannatyne, B., Edgley, S., Hammar, I., Jankowska, E. and Maxwell, D. (2006) Differential projections of excitatory and inhibitory dorsal horn Interneurons relaying information from group II muscle afferents in the cat spinal cord. Journal of Neuroscience, 26, pp. 2871-2880. (doi:10.1523/JNEUROSCI.5172-05.2006)

2005

Wilson, J. W., Hartley, R., Maxwell, D. J., Todd, A. J. , Lieberam, I., Kaltschmidt, J. A., Yoshida, Y., Jessell, T. M. and Brownstone, R. M. (2005) Conditional rhythmicity of ventral spinal interneurons defined by expression of the Hb9 homeodomain protein. Journal of Neuroscience, 25(24), pp. 5710-5719. (doi:10.1523/JNEUROSCI.0274-05.2005)

Hughes, D.I. et al. (2005) P boutons in lamina IX of the rodent spinal cord express high levels of glutamic acid decarboxylase-65 and originate from cells in deep medial dorsal horn. Proceedings of the National Academy of Sciences of the United States of America, 102(25), pp. 9038-9043. (doi:10.1073/pnas.0503646102)

Conte, D., Legg, E., McCourt, A., Silajdzic, E., Nagy, G. and Maxwell, D. (2005) Transmitter content, origins and connections of axons in the spinal cord that possess the serotonin (5-hydroxytryptamine) 3 receptor. Neuroscience, 134, pp. 165-173. (doi:10.1016/j.neuroscience.2005.02.013)

Dougherty, K., Bannatyne, B., Jankowska, E., Krutki, P. and Maxwell, D. (2005) Membrane receptors involved in modulation of responses of spinal dorsal horn interneurons evoked by feline group II muscle afferents. Journal of Neuroscience, 25, pp. 584-593. (doi:10.1523/JNEUROSCI.3797-04.2005)

2004

Hammar, I., Bannatyne, B., Maxwell, D., Edgley, S. and Jankowska, E. (2004) The actions of monoamines and distribution of noradrenergic and serotoninergic contacts on different subpopulations of commissural interneurons in the cat spinal cord. European Journal of Neuroscience, 19, pp. 1305-1316. (doi:10.1111/j.1460-9568.2004.03239.x)

Morris, R., Cheunsuang, O., Stewart, A. and Maxwell, D. (2004) Spinal dorsal horn neurone targets for nociceptive primary afferents: do single neurone morphological characteristics suggest how nociceptive information is processed at the spinal level. Brain Research Reviews, 46, pp. 173-190. (doi:10.1016/j.brainresrev.2004.07.002)

Olave, M. and Maxwell, D. (2004) Axon terminals possessing alpha(2C)-adrenergic receptors densely innervate neurons in the rat lateral spinal nucleus which respond to noxious stimulation. Neuroscience, 126, pp. 391-403. (doi:10.1016/j.neuroscience.2004.03.049)

2003

Polgár, E., Hughes, D.I., Riddell, J.S. , Maxwell, D.J., Puskár, Z. and Todd, A.J. (2003) Selective loss of spinal GABAergic or glycinergic neurons is not necessary for development of thermal hyperalgesia in the chronic constriction injury model of neuropathic pain. Pain, 104(1), pp. 229-239. (doi:10.1016/S0304-3959(03)00011-3)

Todd, A.J. , Hughes, D.I., Polgár, E., Nagy, G.G., Mackie, M., Ottersen, O.P. and Maxwell, D.J. (2003) The expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in neurochemically defined axonal populations in the rat spinal cord with emphasis on the dorsal horn. European Journal of Neuroscience, 17(1), pp. 13-27. (doi:10.1046/j.1460-9568.2003.02406.x)

Bannatyne, B., Edgley, S., Hammar, I., Jankowska, E. and Maxwell, D. (2003) Networks of inhibitory and excitatory commissural interneurons mediating crossed reticulospinal actions. European Journal of Neuroscience, 18, pp. 2273-2284. (doi:10.1046/j.1460-9568.2003.02973.x)

Mackie, M., Hughes, D.I., Maxwell, D.J., Tillakaratne, N.J.K. and Todd, A.J. (2003) Distribution and colocalisation of glutamate decarboxylase isoforms in the rat spinal cord. Neuroscience Letters, 119, pp. 461-472. (doi:10.1016/S0306-4522(03)00174-X)

Maxwell, D., Kerr, R., Rashid, S. and Anderson, E. (2003) Characterisation of axon terminals in the rat dorsal horn that are immunoreactive for serotonin 5-HT(3)A receptor subunits. Experimental Brain Research, 149, pp. 114-124. (doi:10.1007/s00221-002-1339-7)

Olave, M. and Maxwell, D. (2003) Axon terminals possessing the alpha(2c)-adrenergic receptor in the rat dorsal horn are predominantly excitatory. Brain Research, 965, pp. 269-273. (doi:10.1016/S0006-8993(02)04124-0)

Olave, M. and Maxwell, D. (2003) Neurokinin-1 projection cells in the rat dorsal horn receive synaptic contacts from axons that possess alpha(2C)-adrenergic receptors. Journal of Neuroscience, 23, pp. 6837-6846.

Stewart, W. and Maxwell, D.J. (2003) Distribution of and organisation of dorsal horn neuronal cell bodies that possess the muscarinic m2 acetylcholine receptor. Neuroscience, 119(1), pp. 121-135. (doi:10.1016/S0306-4522(03)00116-7)

2002

Cheunsuang, O., Maxwell, D. and Morris, R. (2002) Spinal lamina I neurones that express neurokinin 1 receptors: II. Electrophysiological characteristics, responses to primary afferent stimulation and effects of a selective mu-opioid receptor agonist. Neuroscience, 111, pp. 423-434.

Hammar, I. and Maxwell, D. (2002) Serotoninergic and noradrenergic axons make contacts with neurons of the ventral spinocerebellar tract in the cat. Journal of Comparative Neurology, 443, pp. 310-319. (doi:10.1002/cne.10134)

Olave, M. and Maxwell, D. (2002) An investigation of neurones that possess the alpha(2c)-adrenergic receptor in the rat dorsal horn. Neuroscience, 115, pp. 31-40.

Olave, M., Puri, N., Kerr, R. and Maxwell, D. (2002) Myelinated and unmyelinated primary afferent axons form contacts with cholinergic interneurons in the spinal dorsal horn. Experimental Brain Research, 145, pp. 448-456. (doi:10.1007/s00221-002-1142-5)

Sutherland, F., Bannatyne, B., Kerr, R., Riddell, J. and Maxwell, D. (2002) Inhibitory amino acid transmitters associated with axons in presynaptic apposition to cutaneous primary afferent axons in the cat spinal cord. Journal of Comparative Neurology, 452, pp. 154-162. (doi:10.1002/cne.10374)

2000

Stewart, W. and Maxwell, D.J. (2000) Morphological evidence for selective modulation by serotonin of a subpopulation of dorsal horn cells which possess the neurokinin-1 receptor. European Journal of Neuroscience, 12(12), pp. 4583-4588. (doi:10.1111/j.1460-9568.2000.01350.x)

1999

Welton, J., Stewart, W. , Kerr, R. and Maxwell, D.J. (1999) Differential expression of the muscarinic m2 acetylcholine receptor by small and large motoneurons of the rat spinal cord. Brain Research, 817(1-2), pp. 215-219. (doi:10.1016/S0006-8993(98)01208-6)

This list was generated on Tue Nov 13 12:50:21 2018 GMT.
Jump to: Articles
Number of items: 43.

Articles

Mitchell, E. J., Dewar, D. and Maxwell, D. J. (2016) Is remodelling of corticospinal tract terminations originating in the intact hemisphere associated with recovery following transient ischaemic stroke in the rat? PLoS ONE, 11(3), e0152176. (doi:10.1371/journal.pone.0152176) (PMID:27014870) (PMCID:PMC4807821)

Mitchell, E. J., McCallum, S., Dewar, D. and Maxwell, D. (2016) Corticospinal and reticulospinal contacts on cervical commissural and long descending propriospinal neurons in the adult rat spinal cord; evidence for powerful reticulospinal connections. PLoS ONE, 11(3), e0152094. (doi:10.1371/journal.pone.0152094) (PMID:26999665) (PMCID:PMC4801400)

Huma, Z., Ireland, K. and Maxwell, D. J. (2015) The spino–bulbar–cerebellar pathway: activation of neurons projecting to the lateral reticular nucleus in the rat in response to noxious mechanical stimuli. Neuroscience Letters, 591, pp. 197-201. (doi:10.1016/j.neulet.2015.02.047) (PMID:25711799)

Huma, Z. and Maxwell, D. J. (2015) The spino-bulbar-cerebellar pathway: organization and neurochemical properties of spinal cells that project to the lateral reticular nucleus in the rat. Frontiers in Neuroanatomy, 9, 1. (doi:10.3389/fnana.2015.00001) (PMID:25657619) (PMCID:PMC4303139)

Bhumbra, G. S., Bannatyne, B. A., Watanabe, M., Todd, A. J. , Maxwell, D. J. and Beato, M. (2014) The recurrent case for the Renshaw cell. Journal of Neuroscience, 34(38), pp. 12919-12932. (doi:10.1523/JNEUROSCI.0199-14.2014) (PMID:25232126) (PMCID:PMC4166169)

Huma, Z., Du Beau, A., Brown, C. and Maxwell, D. J. (2014) Origin and neurochemical properties of bulbospinal neurons projecting to the rat lumbar spinal cord via the medial longitudinal fasciculus and caudal ventrolateral medulla. Frontiers in Neural Circuits, 8(Art 40), pp. 1-14. (doi:10.3389/fncir.2014.00040)

Beau, A.D., Shrestha, S.S., Bannatyne, B.A., Jalicy, S.M., Linnen, S. and Maxwell, D.J. (2013) Neurotransmitter phenotypes of descending systems in the rat lumbar spinal cord. Neuroscience, 227, pp. 67-69. (doi:10.1016/j.neuroscience.2012.09.037)

Brockett, E.F., Seenan, P.G., Bannatyne, B.A. and Maxwell, D.J. (2013) Ascending and descending propriospinal pathways between lumbar and cervical segments in the rat: evidence for a substantial ascending excitatory pathway. Neuroscience, 240, pp. 83-97. (doi:10.1016/j.neuroscience.2013.02.039)

Shrestha, S.S., Bannatyne, B.A., Jankowska, E., Hammar, I., Nilsson, E. and Maxwell, D.J. (2013) Inhibitory inputs to four types of spinocerebellar tract neurons in the cat spinal cord. Neuroscience, 226, pp. 253-269. (doi:10.1016/j.neuroscience.2012.09.015)

Shrestha, S.S., Bannatyne, B.A., Jankowska, E., Hammar, I., Nilsson, E. and Maxwell, D.J. (2012) Excitatory inputs to four types of spinocerebellar tract neurons in the cat and the rat thoraco-lumbar spinal cord. Journal of Physiology, 590(7), pp. 1737-1755. (doi:10.1113/jphysiol.2011.226852)

Liu, T.T., Bannatyne, B.A. and Maxwell, D.J. (2010) Organization and neurochemical properties of intersegmental interneurons in the lumbar enlargement of the adult rat. Neuroscience, 171(2), pp. 461-484. (doi:10.1016/j.neuroscience.2010.09.012)

Liu, T.T., Bannatyne, B., Jankowska, E. and Maxwell, D.J. (2010) Properties of axon terminals contacting intermediate zone excitatory and inhibitory premotor interneurons with monosynaptic input from group I and II muscle afferents. Journal of Physiology, 588(21), pp. 4217-4233. (doi:10.1113/jphysiol.2010.192211)

Liu, T.T., Bannatyne, B.A., Jankowska, E. and Maxwell, D.J. (2009) Cholinergic terminals in the ventral horn of adult rat and cat: evidence that glutamate is a co-transmitter at putative interneuron synapses but not at central synapses of motoneurons. Neuroscience, 161(1), pp. 111-122. (doi:10.1016/j.neuroscience.2009.03.034)

Bannatyne, B.A., Liu, T.T., Hammar, I., Stecina, K., Jankowska, E. and Maxwell, D.J. (2009) Excitatory and inhibitory intermediate zone interneurons in pathways from feline group I and II afferents: differences in axonal projections and input. Journal of Physiology, 587(2), pp. 379-399. (doi:10.1113/jphysiol.2008.159129)

Jankowska, E., Bannatyne, B.A., Stecina, K., Hammar, I., Cabaj, A. and Maxwell, D.J. (2009) Commissural interneurons with input from group I and II muscle afferents in feline lumbar segments: neurotransmitters, projections and target cells. Journal of Physiology, 587(2), pp. 401-418. (doi:10.1113/jphysiol.2008.159236)

Stecina, K., Jankowska, E., Cabaj, A., Pettersson, L.G., Bannatyne, B.A. and Maxwell, D.J. (2008) Premotor interneurones contributing to actions of feline pyramidal tract neurones on ipsilateral hindlimb motoneurones. Journal of Physiology, 586(2), pp. 557-574. (doi:10.1113/jphysiol.2007.145466)

Maxwell, D.J., Belle, M.D., Cheunsuang, O., Stewart, A. and Morris, R. (2007) Morphology of inhibitory and excitatory interneurons in superficial laminae of the rat dorsal horn. Journal of Physiology, 584(2), pp. 521-533. (doi:10.1113/jphysiol.2007.140996)

Lindsay, K.A., Maxwell, D.J., Rosenberg, J.R. and Tucker, G. (2007) A new approach to reconstruction models of dendritic branching patterns. Mathematical Biosciences, 205(2), pp. 271-296. (doi:10.1016/j.mbs.2006.08.005)

Jankowska, E., Maxwell, D.J. and Bannatyne, B.A. (2007) On coupling and decoupling of spinal interneuronal networks. Archives Italiennes de Biologie, 145, pp. 235-250.

Polgar, E., Thomson, S., Maxwell, D., Al-Khater, K. and Todd, A. (2007) A population of large neurons in laminae III and IV of the rat spinal cord that have long dorsal dendrites and lack the neurokinin 1 receptor. European Journal of Neuroscience, 26, pp. 1587-1598. (doi:10.1111/j.1460-9568.2007.05793.x)

Bannatyne, B., Edgley, S., Hammar, I., Jankowska, E. and Maxwell, D. (2006) Differential projections of excitatory and inhibitory dorsal horn Interneurons relaying information from group II muscle afferents in the cat spinal cord. Journal of Neuroscience, 26, pp. 2871-2880. (doi:10.1523/JNEUROSCI.5172-05.2006)

Wilson, J. W., Hartley, R., Maxwell, D. J., Todd, A. J. , Lieberam, I., Kaltschmidt, J. A., Yoshida, Y., Jessell, T. M. and Brownstone, R. M. (2005) Conditional rhythmicity of ventral spinal interneurons defined by expression of the Hb9 homeodomain protein. Journal of Neuroscience, 25(24), pp. 5710-5719. (doi:10.1523/JNEUROSCI.0274-05.2005)

Hughes, D.I. et al. (2005) P boutons in lamina IX of the rodent spinal cord express high levels of glutamic acid decarboxylase-65 and originate from cells in deep medial dorsal horn. Proceedings of the National Academy of Sciences of the United States of America, 102(25), pp. 9038-9043. (doi:10.1073/pnas.0503646102)

Conte, D., Legg, E., McCourt, A., Silajdzic, E., Nagy, G. and Maxwell, D. (2005) Transmitter content, origins and connections of axons in the spinal cord that possess the serotonin (5-hydroxytryptamine) 3 receptor. Neuroscience, 134, pp. 165-173. (doi:10.1016/j.neuroscience.2005.02.013)

Dougherty, K., Bannatyne, B., Jankowska, E., Krutki, P. and Maxwell, D. (2005) Membrane receptors involved in modulation of responses of spinal dorsal horn interneurons evoked by feline group II muscle afferents. Journal of Neuroscience, 25, pp. 584-593. (doi:10.1523/JNEUROSCI.3797-04.2005)

Hammar, I., Bannatyne, B., Maxwell, D., Edgley, S. and Jankowska, E. (2004) The actions of monoamines and distribution of noradrenergic and serotoninergic contacts on different subpopulations of commissural interneurons in the cat spinal cord. European Journal of Neuroscience, 19, pp. 1305-1316. (doi:10.1111/j.1460-9568.2004.03239.x)

Morris, R., Cheunsuang, O., Stewart, A. and Maxwell, D. (2004) Spinal dorsal horn neurone targets for nociceptive primary afferents: do single neurone morphological characteristics suggest how nociceptive information is processed at the spinal level. Brain Research Reviews, 46, pp. 173-190. (doi:10.1016/j.brainresrev.2004.07.002)

Olave, M. and Maxwell, D. (2004) Axon terminals possessing alpha(2C)-adrenergic receptors densely innervate neurons in the rat lateral spinal nucleus which respond to noxious stimulation. Neuroscience, 126, pp. 391-403. (doi:10.1016/j.neuroscience.2004.03.049)

Polgár, E., Hughes, D.I., Riddell, J.S. , Maxwell, D.J., Puskár, Z. and Todd, A.J. (2003) Selective loss of spinal GABAergic or glycinergic neurons is not necessary for development of thermal hyperalgesia in the chronic constriction injury model of neuropathic pain. Pain, 104(1), pp. 229-239. (doi:10.1016/S0304-3959(03)00011-3)

Todd, A.J. , Hughes, D.I., Polgár, E., Nagy, G.G., Mackie, M., Ottersen, O.P. and Maxwell, D.J. (2003) The expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in neurochemically defined axonal populations in the rat spinal cord with emphasis on the dorsal horn. European Journal of Neuroscience, 17(1), pp. 13-27. (doi:10.1046/j.1460-9568.2003.02406.x)

Bannatyne, B., Edgley, S., Hammar, I., Jankowska, E. and Maxwell, D. (2003) Networks of inhibitory and excitatory commissural interneurons mediating crossed reticulospinal actions. European Journal of Neuroscience, 18, pp. 2273-2284. (doi:10.1046/j.1460-9568.2003.02973.x)

Mackie, M., Hughes, D.I., Maxwell, D.J., Tillakaratne, N.J.K. and Todd, A.J. (2003) Distribution and colocalisation of glutamate decarboxylase isoforms in the rat spinal cord. Neuroscience Letters, 119, pp. 461-472. (doi:10.1016/S0306-4522(03)00174-X)

Maxwell, D., Kerr, R., Rashid, S. and Anderson, E. (2003) Characterisation of axon terminals in the rat dorsal horn that are immunoreactive for serotonin 5-HT(3)A receptor subunits. Experimental Brain Research, 149, pp. 114-124. (doi:10.1007/s00221-002-1339-7)

Olave, M. and Maxwell, D. (2003) Axon terminals possessing the alpha(2c)-adrenergic receptor in the rat dorsal horn are predominantly excitatory. Brain Research, 965, pp. 269-273. (doi:10.1016/S0006-8993(02)04124-0)

Olave, M. and Maxwell, D. (2003) Neurokinin-1 projection cells in the rat dorsal horn receive synaptic contacts from axons that possess alpha(2C)-adrenergic receptors. Journal of Neuroscience, 23, pp. 6837-6846.

Stewart, W. and Maxwell, D.J. (2003) Distribution of and organisation of dorsal horn neuronal cell bodies that possess the muscarinic m2 acetylcholine receptor. Neuroscience, 119(1), pp. 121-135. (doi:10.1016/S0306-4522(03)00116-7)

Cheunsuang, O., Maxwell, D. and Morris, R. (2002) Spinal lamina I neurones that express neurokinin 1 receptors: II. Electrophysiological characteristics, responses to primary afferent stimulation and effects of a selective mu-opioid receptor agonist. Neuroscience, 111, pp. 423-434.

Hammar, I. and Maxwell, D. (2002) Serotoninergic and noradrenergic axons make contacts with neurons of the ventral spinocerebellar tract in the cat. Journal of Comparative Neurology, 443, pp. 310-319. (doi:10.1002/cne.10134)

Olave, M. and Maxwell, D. (2002) An investigation of neurones that possess the alpha(2c)-adrenergic receptor in the rat dorsal horn. Neuroscience, 115, pp. 31-40.

Olave, M., Puri, N., Kerr, R. and Maxwell, D. (2002) Myelinated and unmyelinated primary afferent axons form contacts with cholinergic interneurons in the spinal dorsal horn. Experimental Brain Research, 145, pp. 448-456. (doi:10.1007/s00221-002-1142-5)

Sutherland, F., Bannatyne, B., Kerr, R., Riddell, J. and Maxwell, D. (2002) Inhibitory amino acid transmitters associated with axons in presynaptic apposition to cutaneous primary afferent axons in the cat spinal cord. Journal of Comparative Neurology, 452, pp. 154-162. (doi:10.1002/cne.10374)

Stewart, W. and Maxwell, D.J. (2000) Morphological evidence for selective modulation by serotonin of a subpopulation of dorsal horn cells which possess the neurokinin-1 receptor. European Journal of Neuroscience, 12(12), pp. 4583-4588. (doi:10.1111/j.1460-9568.2000.01350.x)

Welton, J., Stewart, W. , Kerr, R. and Maxwell, D.J. (1999) Differential expression of the muscarinic m2 acetylcholine receptor by small and large motoneurons of the rat spinal cord. Brain Research, 817(1-2), pp. 215-219. (doi:10.1016/S0006-8993(98)01208-6)

This list was generated on Tue Nov 13 12:50:21 2018 GMT.