
1. [SOLUTIONS] Data Structures
People
You are to write a program which works with a collection of people. We are interested in name
and age only of each person. What data structure would use to represent the collection?
Answer: This could be a list of dictionaries, where each dictionary represents a person:
[​{"name": "John Smith", "age": 25}, {"name": "Jane Doe", "age": 22}]

RoomsInABuilding
The Sir Alwyn Williams Building has 5 floors. There are a number of rooms on each floor. Each
room has a number, a capacity, whether it has a window, and whether or not it has a data
projector in it. What data structure could hold this information?
Answer: This could be a dictionary with each floor corresponding to a list of rooms, each
room represented by a dictionary:
{ 1: [

 {"number": 6, "capacity": 30, "window": True, "projector": False}

 {"number": 11, "capacity": 20, "window": False, "projector": True}

],

 2: [

 {"number": 14, "capacity": 30, "window": True, "projector": False}

 {"number": 7, "capacity": 20, "window": False, "projector": False}

] }

PhoneContactsList
In this exercise, we’ll consider how contacts are stored on your mobile phone. We’d like to be
able to find/lookup any phone numbers using the name of the person we’d like to call.

1. Consider the simplest case of a structure that can hold a single entry consisting of the
persons name and an associated phone number. What data structure could you use to
store the following entry ‘Mick Jagger’ with telephone number 07731 423321?

Answer: A dictionary could be used with the keys ​name​ and ​number​:
{"name": "Mick Jagger", "number": "07731 423321"}
Note that the phone number would need to be stored as string to preserve the leading
zero.

2. For the phone numbers we’d like replace the single value with a more complex set of
information which includes the type of phone: work, home, mobile, the number
associated with it and the type of phone that is the default number for this contact. How

would you adjust your data structure to include this additional information? For ‘Mick
Jagger’ 07731 423321 is his mobile number and his home phone is 0112 337 8932.
Mick is abroad a lot so his default number should be his mobile phone.

Answer: The single ​number ​value could be replaced by a nested dictionary numbers and
a default could be specified:
{

 "name": "Mick Jagger",

 "numbers": {

 "home": "0112 337 8932",

 "mobile": "07731 423321"

 },

 "default": "mobile"

}

3. We have the structure for one contact but most people have more than one friend or
family member they’d like to call. How would you extend your data structure to add a
new entry for ‘Keith Richards’, mobile number 07832 778412, home phone 0133 227
3345 and default number home phone?

Answer: Add another dictionary structure and store them in a list:
[

 {

 "name": "Mick Jagger",

 "numbers": {"home": "0112 337 8932", "mobile": "07731 423321"},

 "default": "mobile"

 },

 {

 "name": "Keith Richards",

 "numbers": {"home": "0133 227 3345", "mobile": "07832 778412"},

 "default": "home"

 }

]

4. Declare and initialise a variable called ​contacts ​to store the two contacts and then
write code to lookup up and print the following values:

a. Mick Jagger’s mobile number
Answer:
for person in contacts:

 if person["name"] == "Mick Jagger":

 print(person["numbers"]["mobile"]

b. Keith Richards' home phone
Answer:
for person in contacts:

 if person["name"] == "Keith Richards":

 print(person["numbers"]["home"]

c. Mick Jagger’s default number
Answer:
for person in contacts:

 if person["name"] == "Mick Jagger":

 print(person["numbers"][person["default"]]

Music
A program is needed that works with music. We need a data structure to hold a tune. Let’s
consider what’s in a tune?

● It consists of a sequence of notes played one at a time - one after the other.
● Each note has a pitch - how high or low the note sounds - and we will assume this is one

of 56 notes.
○ These notes are divided into 8 octaves, numbered 1 to 8.
○ Each octave has 7 notes in sequence, letter A to G.

● A note may be a semi-tone higher (sharp) or a semi-tone lower (flat) or natural.
● A note has a duration - how long it is played for.

○ This is measured in beats - 1/16, ⅛, ¼, ½, 1, 2, 4
○ A note can be “dotted”, which increases the duration by half its main duration

1. Come up with a suitable Python data structure to hold a single note.

Answer: Each note is a dictionary with entries for octave (integer - 1-8), note letter (string
“A”-”G”), natural/flat/sharp (integer - 0,1,2), duration (float), dotted (boolean) e.g. ​{
“octave” : 4, “note” : “B”, “nfs” : 1, “duration” : 1.0, “dotted” : False }

is B flat in the 4th octave, lasting for a single beat, not dotted.

2. Extend this to hold a complete tune as described above.
Answer: A complete tune would be a list of dictionaries in this format.

3. How would you extend your data structure to include ​chords​ - multiple notes played at
the same time?

Answer: Each item in the list, instead of being just the note dictionary, could be a list of
note dictionaries.

TextDocument
In this exercise, we’ll consider how documents are represented as a data structure.

1. Consider a plain text document as an ordered collection of paragraphs. What data
structure would you use to hold it?

Answer: List of strings. Each string represents a paragraph - a sequence of characters
that is implicitly terminated with a new line character. For example:

["This is the first paragraph of text. It is quite short.", "And this is the

second. Even shorter."]

2. Now imagine that each paragraph can have styling attached - for this example, consider
only the styling bold, italics, underline, which can be applied in any order. Adjust/extend
your data structure as necessary.

Answer: Add a second list, this time of dictionaries - one dictionary for each line. The
dictionaries contain three entries with the keys “bold”, “italic” and “underline”. The
values associated with these entries are all initially False. If the paragraph
corresponding to a dictionary has been styled, then the values of the relevant styling
entries will be set to True. For example, if the first paragraph in the example above was
styled with bold and italic, and the second with nothing, this second list would be as
follows:
[{ "bold" : True, "italic" : True, "underline" : False }, { "bold" : False,

"italic" : False, "underline" : False }]

Alternatively, each string entry in the first list could be expanded to be a dictionary
containing a “text” key with the text string as value, and a “styling” key with the
corresponding styling dictionary as the value.

3. Now, individual sequences of characters within the text can be styled, using the same
three options as in (2) above. Extend your data structure further.

Answer: A third list is introduced - each entry specifies the styling of fragments of the
corresponding paragraph. The entry is itself a list - containing dictionaries. Each
dictionary specifies the styling of one fragment in the paragraph. The dictionary
contains entries for the start and end point of the fragment in the paragraph, and also a
dictionary like the ones used in (b) above to specify the particular styling. For example, if
the first word of the second paragraph was bold, but no other fragment was styled at all,
then this list would be as follows:
[[{ "start" : 0, "end" : 2, "styling" : { "bold":True, "italic":False,

"underline":False } }], []]

Alternatively, as in the alternate version of (2) above, the dictionary for a whole line
(containing text and styling) can be extended with a “fragmentStyling” entry, the value
for which is a list of fragments for that line, as in the list above.

4. Finally, how would you extend your data structure to enable the document to contain
images inserted at arbitrary points in the text. For this example, it doesn’t matter exactly
how an image is represented - say it’s an empty dictionary for now; the challenge is to
work out how to mix text and images.

Answer: A fourth list of a similar structure as that in (3), apart from replacing “start” and
“end” entries with a single “pos” entry - the image should be inserted before this
position in the paragraph - and replacing the “styling” entry by an “image” entry. For
example, if an image were inserted directly after the first word of the first paragraph, then
this look as follows:
[[{ "pos" : 4, "image" : {} }], []]

Alternatively, as before, the dictionary for a whole line (containing text, styling and
fragment styling) can be extended with an “images” entry, the value for which is a list of
the image dictionaries for that line, as specified above.

