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The 1D fluid dynamics model presented here predicts time varying blood pressure and
flow at any given location in a bifurcating network of blood vessels (see Figure 2). Each
vessel within the network is modeled as an axisymmetric surface of revolution with a de-
formable surface modeled as a linearly elastic material. Vessels have constant length L and
variable radius R and dynamics are predicted in cylindrical polar coordinates (r, θ, x). Ge-
ometric properties for the network are extracted from micro-CT images and dynamic flow
and pressure are measured over one cardiac cycle in the first vessel.

Equations For Single Vessel

Governing equations are based on conservation of fluid volume and balance of axial mo-
mentum in the vessel combined with an equation balancing the forces acting on the vessel
walls. Fluid equations are derived by averaging the continuity and axial components of the
Navier-Stokes equations in cylindrical coordinates over the cross-sectional area. The result-
ing one-dimensional (1D) system of hyperbolic partial differential equations (Olufsen et al.,
2000, Qureshi et al., 2017) is given by
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where 0 ≤ x ≤ L and 0 ≤ t ≤ T are the axial and temporal coordinates and T is the
length of the cardiac cycle (assumed constant at T = 0.11 s). p(x, t) (mmHg) denotes the
blood pressure in the vessel, p0 = 0 is the pressure outside the vessel. q(x, t) (ml/s) is the
volumetric flow rate, A(x, t) = πR(x, t)2 (cm2) is the cross-sectional area, 0 < r ≤ R(x, t)
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(cm) is the vessel radius, and A0 = πr20 is the reference cross-sectional area. The blood
density ρ = 1.057 (g/ml), the kinematic viscosity ν = 0.0462 (cm2/s), and the boundary
layer thickness δ = 0.03 (cm) are assumed constant and fixed. Each vessel is defined by its
reference radius r0 (cm), length L (cm) (both given in Table (2)), and vessel stiffness Eh/r0
(cm2g/s).

The system of equations is solved using the two-step Lax-Wendroff method. The spatial
and time steps for the observations are spaced uniformly, where ∆x = 2.5 × 10−2 cm and
∆t = 1.34 × 10−5 s, respectively. The number of spatial points varies based on the length
of each vessel (see Table (2) for each vessel’s measurements). For each vessel, one spatial
location is considered and subsequently the code returns pressure and flow across all time
points at one spatial point. The spatial location considered for each vessel is the midpoint
of the discretized values of x (described above). For more details on the mathematical model
and numerical methods described here, please refer to Olufsen et al. 2000 and Qureshi et al.
2017 (equations (1)-(3) correspond to equations (2)-(3) in Qureshi et al. 2017).

Network Construction and Boundary Conditions

The network used for the simulations was obtained by segmenting the micro-CT image of a
mouse lung (Vanderpool et al. 2014). Though the pulmonary tree is expansive, only 21 of
the largest arteries were explicitly modeled to form a network of 1D vessels and the remain-
ing vasculature was lumped into circuit type 0D Windkessel models.

Bifurcation conditions: The network is constructed by connecting vessels at bifurcat-
ing junctions. At every bifurcation, one parent and two daughter vessels are connected. By
ensuring conservation of volumetric flow rate and pressure as

qp(L, t) = q1(0, t) + q2(0, t),

pp(L, t) = pd1(0, t) = pd2(0, t), (4)

(5)

where the subscripts p and di (i = 1, 2) denote the parent and daughter vessels, respectively.

Inflow condition: The flow qin(t) over one cardiac cycle, extracted from hemodynamic
data, is imposed at the inlet of the first vessel. We assume that predictions are periodic and
that the flow is repeated at the onset of each cardiac cycle.

Outflow conditions: At each of the terminal vessels, a Windkessel model (represented
by an RCR-circuit) relating pressure and flow is applied at each terminal vessel (see Fig-
ures 1 and 2). The Windkessel model can be formulated as a first order ordinary differential
equation relating pressure and flow as

(p(L, t) − pc) +R2Cp
dp(L, t)

dt
= (R1 +R2)q(L, t) +R1R2Cp

dq(L, t)

dt
, (6)

where R1, R2 (mmHg s/ml) denote resistance and Cp (ml/mmHg) the capacitance. The term
pc denotes the pressure in the capillary beds. We assume that the maximum pressure drop
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occurs across the Windkessels, implying that pc = 0. Physiologically, R1 and R2 represent
the resistance due to the proximal and distal vasculature. The sum R1 + R2 gives the total
peripheral resistance RT and Cp denote the total peripheral compliance of the vascular region
beyond each terminal vessel. The right hand side of equation (6) is calculated for each vessel
by distributing the qin(t) based on the geometric structure of the network.
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Figure 1: Nominal parameter values are predicted from pressure and flow values data by (a) approximating
total compliance Zc from the slope of the pressure-flow loop during early ejection, (b) estimating the time
constant τ = CpRT by fitting a exponential curve through the diastolic part of the pressure curve, (c)
predicting the flow distribution across a bifurcation as a function of the vessel radius of the daughter vessels.
These quantities are used to predict resistance and compliance for the Windkessel model applied at each
terminal vessel (d).

Nominal (a priori) parameter values

Parameter values for this model include internal parameters needed to specify the fluid
(density ρ, viscosity µ, and boundary layer thickness δ), the elastic membrane of each vessel
in the network (Eh/r0), and the specific terminal vessel boundary conditions. At the inlet
we impose measured flow whereas a Windkessel model with three parameters (R1, R2, Cp) is
prescribed at the outlet of each terminal vessel. A network with N generations have 2N − 1
vessels and 2(N−1) outlets. If all parameters were assumed independent the model would have
2N − 1 + 3 · 2N−1 + 3 parameters. The network studied here (see Figure 2) has 7generations,
giving between 322 parameters. To make this problem tractable we assume that:

• Vessel stiffness is constant throughout the network.

• Boundary conditions for each vessel can be calculated from total network resistance
and compliance.

• Fluid properties ρ, µ, and δ are known and constant.

Imposing these conditions allows us to reduce the number of parameters to be inferred
to vessel stiffnesses Eh/r0 for each terminal vessel and parameters R1, R2, and Cp for each
vessel. In our previous studies (e.g. Olufsen et al. 2000), the vessel stiffness was modeled as

Eh

r0
= k1e

k2r0 + k3. (7)

However, k1, k2 and k3 are unidentifiable in this setting. Instead, we fix k1 = 0 and only
infer the parameter k3, making the stiffness constant throughout the network. To reduce the
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parameter space further, we impose global scaling factors 0 < r1, r2, c1 to adjust the nominal
parameters (R1j, R2j, and Cpj) as

R̂1j = r1R1j, R̂2j = r2R2j, Ĉpj = c1Cpj, (8)

for all terminal vessels j in the network.
Nominal (a priori) values for these quantities are computed from data as discussed below.

Vessel stiffness As illustrated in Figure 1a, Eh/r0 is approximated using the “upslope
method” (see Qureshi et. al. 2017) using dynamic pressure and flow data. The interval for
physiologically valid stiffness values is approximated to be [104, 105].

Outflow boundary parameters By definition, the total vascular resistance, RT = p/q,
where p and q denote the time averaged pressure and flow in the first vessel. The total
resistance is distributed to each of the terminal values from approximations of flow ratios to
each terminal branch j, giving RTj = p/qj, where p is the time averaged pressure (obtained
from data) and qj is the averaged flow to that vessel predicted by recursively applying
Poiseuille’s law relating flow to the vessel radius. Denoting daughter vessels d1 and d2
connected to a parent vessel p at any bifurcation, we get

qd1 =
Gd1

Gd1 +Gd2

qp and qd2 =
Gd2

Gd1 +Gd2

qp, (9)

where G is the vessel conductance, defined by

G =
πr40
8µL

(10)

for any vessel in the network.
For each terminal branch, the total resistance to the specific branch RTj is distributed

between the proximal R1j and distal R2j resistances using a constant factor a = 0.2, so that

R1j = (0.2)RTj and R2j = (0.8)RTj. (11)

The compliance Cpj associated with the Windkessel models attached to the terminal
vessels j is defined by

Cpj =
τ

RTj

, (12)

where τ is the time constant, approximated from the available pressure data fitting a decaying
exponential function to the diastolic part of the pressure curve as illustrated on Figure 1b.

Nominal Windkessel Parameters Nominal parameter estimates using equations (9) -
(12) are provided in Table 1. These values are hardcoded in sor06.c for the given
pulmonary geometry and should not be changed. The Windkessel adjustment pa-
rameters have been set to r1 = 2.0193 × 10−1, r2 = 8.8890 × 10−1, and c1 = 1.4665 × 100 in
the MATLAB file main.m.
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Table 1: Nominal Windkessel Estimates

terminal vessel R1j R2j Cpj

index (mmHg s / ml) (mmHg s / ml) (ml / mmHg)

5 5.1041 × 102 2.0416 × 103 5.2546 × 10−3

7 3.8800 × 102 1.5520 × 103 6.9124 × 10−3

9 5.3883 × 102 2.1553 × 103 4.9775 × 10−3

11 4.6696 × 102 1.8679 × 103 5.7435 × 10−3

12 1.8078 × 103 7.2310 × 103 1.4836 × 10−3

13 1.1737 × 104 4.6947 × 103 2.3900 × 10−3

15 2.6608 × 103 1.0643 × 103 1.0542 × 10−2

17 1.0412 × 104 4.1649 × 103 2.6940 × 10−3

19 1.0711 × 103 4.2845 × 102 2.6188 × 10−2

20 1.1697 × 103 4.6790 × 102 2.3980 × 10−2

21 8.3431 × 102 3.3372 × 102 2.3362 × 10−2

C++ and MATLAB files

The code (provided in the “Model” folder) includes the C++ files for the model and the
numerical solver, as well as a MATLAB wrapper (main.m) that passes parameters to the
model. The model outputs pressure (p(x, t)), flow (q(x, t)), area (A(x, t)), and the pulse
wave speed (c(x, t)) in each of the vessels, and prints the outputs to the files pu1 id.2d,
pu2 id.2d, and pu3 id.2d, which corresponds to vessels 1, 2 and 3 shown in Figure 2.
The term id corresponds to the argument id that is passed to the model, which can be
used to label model outputs for different parameter combinations. For the model to run
appropriately, there are 7 arguments that need to be passed to the function sor06.C:

• k3: Corresponds to Eh/r0 in the model equations.

• r1, r2, c1: Corresponds to the scaling parameters defined in equation (8).

• HB: The number of heartbeats for the model to run in order to reach a steady state
solution.

• cycles: The number of cycles that need to be printed to the output files (i.e. the
number of heartbeats you wish to see in your model output plots).

• id: The identifier (an integer) to be attached to the output file puX id.2d in order to
track model outputs with different parameter estimates.

Additional information about the C++ files used can be found in the README.txt file.
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Table 2: Dimensions of vessels in the 21-vessel network.

Control

vessel connectivity r0 × 10−1 L× 10−1

index (daughters) (cm) (cm)

1∗ (2,3) 0.47 4.10

2 (4,5) 0.26 4.45

3 (6,7) 0.37 3.72

4 (8,9) 0.24 2.41

5 – 0.13 0.52

6 (14,15) 0.32 2.02

7 – 0.17 2.12

8 (10,11) 0.23 3.11

9 – 0.17 1.77

10 (12,13) 0.20 2.62

11 – 0.16 0.69

12 – 0.15 1.40

13 – 0.14 0.62

14 (16,17) 0.26 0.81

15 – 0.19 1.84

16 (18,19) 0.25 0.83

17 – 0.15 3.02

18 (20,21) 0.24 4.69

19 – 0.15 1.77

20 – 0.22 1.78

21 – 0.18 0.55

* first vessel. Connectivity (i, j), i denotes the left daughter and j the right daughter. Vessels indicated by

– are terminal.
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Figure 2: 21 Vessel network with 3-Element Windkessel attached at each boundary (from
Paun et. al. 2018).
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