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Abstract—Blood flow in the large systemic arteries is model
using one-dimensional equations derived from the axisymm
ric Navier–Stokes equations for flow in compliant and taper
vessels. The arterial tree is truncated after the first few gen
tions of large arteries with the remaining small arteries a
arterioles providing outflow boundary conditions for the lar
arteries. By modeling the small arteries and arterioles a
structured tree, a semi-analytical approach based on a lin
ized version of the governing equations can be used to de
an expression for the root impedance of the structured tre
the frequency domain. In the time domain, this provides
proper outflow boundary condition. The structured tree is
binary asymmetric tree in which the radii of the daughter v
sels are scaled linearly with the radius of the parent ves
Blood flow and pressure in the large vessels are compute
functions of time and axial distance within each of the arteri
Comparison between the simulations and magnetic reson
measurements in the ascending aorta and nine peripheral
tions in one individual shows excellent agreement between
two. © 2000 Biomedical Engineering Society.
@S0090-6964~00!00311-8#
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INTRODUCTION

The aim of this work is to develop and use a on
dimensional fluid-dynamical model predicting blood flo
and pressure in the systemic arteries at any posi
along the vessels. Such a model can be used to study
profile of the flow and pressure waves as they propag
along the arteries. The form of the waves change a
result of the arteries changing geometry and str
ture.19,25

The systemic arteries are compliant vessels wh
taper along their length and become stiffer with smal
radii. They are organized in a bifurcating tree in whic
the cross-sectional area of the vessels expands from
proximately 5 cm2 at the aortic root to approximatel
400 cm2 at the arterioles.6 The expansion occurs becau
at each bifurcation the combined cross-sectional area
the daughter vessels is larger than that of the pa
vessel, even though the cross-sectional area of eac
the daughter vessels is smaller than the area of the pa
vessel. Furthermore, at the distal end of the arterial tr
at the arteriolar level, there is a high resistance to
flow.10 As a result, the flow and pressure waves a
reflected, and the reflected waves propagate backw
through the arterial tree. For example, the reflected w
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1282 OLUFSEN et al.
is diminished in some people suffering from diabetes
vascular diseases such as atherosclerosis.9,16,19It has also
been observed that people with stiffer arteries have a
pronounced reflected wave but increased diastolic
systolic pressures.3,13,19The profiles of the flow and pres
sure waves vary significantly even among heal
people.10 Hence, being able to construct a model bas
on measured geometry and a single noninvasive fl
measurement in the ascending aorta will enable us
study the wave forms for any given subject. Compu
pressure and flow profiles could be used as part o
diagnostic tool. For example, for a given subject, me
sured pathologic flow profiles could be compared w
computed healthy flow profiles. Studies of how t
model parameters must change to simulate the meas
pathologic flow profiles might lead to a better unde
standing of the pathologic condition. In addition, com
putation of flows and pressure profiles could be used
connection with simulators, e.g., in surgical or anesthe
simulators.

In this paper we use the one-dimensional fluid-dyn
mics model developed earlier21 for a case study compar
ing simulated flow and pressure waves with flows o
tained using magnetic resonance techniques. The ge
etry ~lengths, inlet and outlet radii! of the vessels is
obtained using measured data from one subject and o
vessel properties~mainly elasticity of the walls and the
peripheral resistances! are based on the previous mode21

but with parameters adjusted to compare with the m
sured data. In addition, the equation specifying how pr
sures change from a parent vessel into its daughters
been modified. Finally, in our previous work,21 the fluid
dynamical model was stated but not derived; so we p
vide a complete derivation of the equations and state
algorithms used to solve them.

The model21 consists of two parts: The large arterie
in which blood flow and pressure are predicted at a
point along the vessels, and the small arteries, in wh
a relation between flow and pressure yields outfl
boundary conditions for the large arteries~see Fig. 1!.
Blood flow and pressure in the systemic arteries~large
and small vessels! are determined using the incompres
ible axisymmetric Navier–Stokes equations for a Ne
tonian fluid. The one-dimensional model is obtained
integrating these equations over the cross-sectional
of the vessels.

The tree representing the large arteries originates
the heart and includes one or two generations from
aorta, iliac, and femoral arteries. The geometry of
large vessels~lengths and diameters! mimics the actual
geometry of the arteries.4,25,28These data are obtained b
magnetic resonance techniques. Since we are intere
in predicting flow and pressure waves for a given su
ject, lengths and diameters for all vessels must be fa
ful to the human arterial tree. However, in order to lim
s
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the model we made the following exceptions: The tw
coronary arteries, the intercostal arteries, the arte
branching from the celiac axis, and various branch
from the subclavian, brachial, and carotid vessels are
out. Arteries present on both sides of the body are m
eled identically. These include the renal, carotid, subc
vian, brachial, iliac, and the femoral arteries. The co
nary arteries are not included because the inflow into
aorta from the aortic valve is measured in the ascend
aorta past the coronary bifurcation. However, the co
nary arteries take approximately 4%–5% of the card
output and hence they should be included if the inflo
into aorta is measured immediately after the aortic val

FIGURE 1. The systemic arterial tree. The large arteries are
modeled as a binary tree where the geometry of the vessels
are determined from magnetic resonance measurements.
The small arteries are modeled as structured trees attached
at the terminals of the large vessels. The geometry of the
structured trees does not mimic the actual geometry of the
vessels, but is based on general statistical relationships,
which are estimated from literature data. The numbers of the
vessels refer to the various segments of the large arteries
and the dimensions of these segments are given in Table 1.
The letters show the ten locations where the flows were
measured. The data for these are also specified in Table 1. In
order to avoid too many artifacts due to entry region flow,
where possible, the flows are measured 2 cm beyond the
bifurcations.
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1283Blood Flow Simulation and Validation in Large Arteries
The intercostal arteries take less than 1% of the card
output and, hence, their neglect does not alter the c
puted flows significantly. The remaining arteries not
cluded in the model are beyond the initial branchi
from the aorta, e.g., the branches from the celiac a
We have no measurements in these arteries and inclu
them would increase the computational time sign
cantly. Finally, left and right arteries are modeled
identical since we only measured the geometry in o
side.

The small arteries are modeled as binary asymme
structured trees attached at the terminals of the la
arteries~see Fig. 2!. Each of the vessels within the stru
tured trees is modeled as a straight segment of comp
vessel.20,21 Unlike the large arteries, the structured tre
do not mimic the actual geometry of the vessels, but
based on general statistical relationships which are e
mated from literature data.5,14

LARGE ARTERIES

Predicting blood flow and pressure in compliant ve
sels requires three equations. Two equations ensure
servation of volume and momentum, and an equation
state relates the fluid influence on the vessel wall to
compliant properties.

A typical vessel is modeled as an axisymmetric co
pliant cylinder. The velocity of the fluid enclosed withi
the cylinder is denoted byu5@ur(r ,x,t),ux(r ,x,t)#,
where r is the radial coordinate,x is the position along
the vessel,t is time, ur is the radial velocity, andux is
the axial velocity. The blood vessel wall is assumed
be impermeable. Hence, the no-slip condition is satis
if the velocity of fluid at the wall equals the velocity o
the wall. The densityr and the viscositym are taken to
be constant. Letp(x,t) represent the pressure of the flu
and let p0 ~which is constant! represent the diastolic
pressure. We assume that the pressure does not
much over the cross-sectional area of the vessel, i.e.,p is
approximately independent ofr. Let R(x,t) be the radius
of the vessel and letA(x,t)5pR2(x,t) be the corre-
sponding cross-sectional area. The vessel is assume
taper exponentially, i.e., the equilibrium radius isr 0(x)
5r texp(log(rb /rt)x/L) when p(x,t)5p0. Here, r t and r b

denote the inlet~top! and outlet ~bottom! radii of the
vessel, andL denotes the vessel length. Finally, it
assumed that the wall of the vessel undergoes ra
motions only, i.e., that the vessel wall is longitudina
tethered.

Fluid Dynamic Equations for the Large Arteries

Continuity Equation.For axisymmetric flow, the continu
ity equation requires that the divergence of the veloc
field vanish, yielding7
-

g

t

-

-

y

to

l

]ux

]x
1

1

r

]~rur !

]r
50. ~1!

Integrating~1! over the cross-sectional area of the ves
gives

052pE
0

RS ]ux

]x
1

1

r

]~rur !

]r D rdr

52p
]

]xE0

R

uxrdr 22p
]R

]x
@rux#R12p@rur #R . ~2!

Since the vessel is longitudinally tethered~i.e., undergoes
radial motion only! and the fluid sticks to the vessel wa
~due to the no-slip condition!

@ux#R50 and @ur #R5
]R

]t
. ~3!

Moreover, since the cross-sectional areaA5pR2,

2p@rur #R52pR
]R

]t
5

]A

]t
. ~4!

Let us define

q52pE
0

R

uxrdr ~5!

as the flow~volume/time! through the vessel. Then, th
one-dimensional continuity equation can be obtained
ing ~3!–~5! in ~2!:

]q

]x
1

]A

]t
50. ~6!

Momentum Equation.For axisymmetric flow with no
swirl the x-momentum equation reads7

]ux

]t
1ux

]ux

]x
1ur

]ux

]r
1

1

r

]p

]x
5

n

r

]

]r S r
]ux

]r D . ~7!

The first three terms represent the axial acceleration
the fluid, and the remaining terms represent the sum
all forces acting on the fluid. In this model the forces a
composed of pressure and viscous contributionsn
5m/r is the kinematic viscosity!. Generally, the previ-
ous equation contains an additional viscous term ac
in the longitudinal direction (n]2ux /]x2). In this deriva-
tion we have neglected the longitudinal viscous te
since it is small compared to the radial term@the right-
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1284 OLUFSEN et al.
hand side of~7!#. The longitudinal viscous term is sma
because blood vessels are very long in comparison
their radii.

As in the case of the continuity equation a on
dimensional model is obtained by integrating over t
cross-sectional area, keeping in mind thatp is assumed
constant over that area

2pE
0

R]ux

]t
rdr 12pE

0

RS ux

]ux

]x
1ur

]ux

]r D rdr 1
A

r

]p

]x

52pnF r
]ux

]r G
R

. ~8!

Using Eqs.~3! and~5! the first term in~8! can be written
as

2pE
0

R]ux

]t
rdr 5

]

]t S 2pE
0

R

uxrdr D 2
]R

]t
2p@rux#R5

]q

]t
.

Through integration by parts, the continuity Eq.~1! and
the relationships in~3! can be used to simplify the sec
ond term of~8!:

2pE
0

RS ux

]ux

]x
1ur

]ux

]r D rdr

52pE
0

RS rux

]ux

]x
2ux

]~rur !

]r Ddr

52pE
0

R]ux
2

]x
rdr 5

]

]x S 2pE
0

R

ux
2rdr D .

Combining the earlier terms with the remaining terms
~8! gives

]q

]t
1

]

]x S 2pE
0

R

ux
2rdr D 1

A

r

]p

]x
52pnF r

]ux

]r G
R

. ~9!

So far we have not made any assumptions about
form of the velocity profile. For pulsatile laminar flow i
slightly tapered vessels, the velocity profile is rather fl
except for a thin boundary layer of widthd!R, in which
the transition to zero velocity at the wall is made~the
no-slip condition!.19,23 Based on these considerations w
suggest the following model for the velocity profile

ux5H ūx for r<R2d

ūx~R2r !/d for R2d,r<R.
~10!
Hereūx(x,t) is the axial velocity outside of the boundar
layer. According to Lighthill17 the boundary layer thick-
ness d ~for the large arteries! can be estimated from
(n/v)1/25(nT/(2p))1/2'0.1 cm, where the kinematic
viscosity n50.046 cm2/s, v is the angular frequency
and the period of the cardiac cycleT51.1 s. The inte-
grals in ~9! can be expressed as power series ind:

q52pE
0

R

uxrdr 5AūxS 12
d

R
1O~d2! D

and

2pE
0

R

ux
2rdr 5Aūx

2S 12
4

3

d

R
1O~d2! D .

Combining these two terms, gives

2pE
0

R

ux
2rdr 5

q2

A S 11
2

3

d

R
1O~d2! D .

The viscous drag force can be evaluated using the
locity profile in ~10!:

2pnF r
]ux

]r G
R

52
2pnRūx

d
52

2pnR

d

q

A
~11O~d!!.

~11!

Keeping the leading terms in each component and ins
ing them into~9! yields the one-dimensional equation

]q

]t
1

]

]x S q2

A D1
A

r

]p

]x
52

2pnR

d

q

A
. ~12!

In the above derivation we assumed that the visc
stress~by the fluid on the wall! is perfectly in phase with
the mean velocity. Young and Tsai among others28,33

defined the viscous stress as a combination of two ter
one accounting for the part in phase with the mean
locity and a second term which is proportional to t
time derivative of the velocity. Their derivation is base
on oscillatory flow in a rigid vessel where the unstea
term is included. In a rigid vesselūx can be found in
terms of Bessel functions with complex arguments d
pending on the frequency of the oscillatory flow. Th
result can be expanded in the limit of either small
large frequencies. In the low frequency limit Poiseui
flow is recovered and at high frequencies the equival
to ~11! is obtained. The solution by Young and Tsai33 is
equivalent to what we have obtained for the small art
ies where the viscous effects are more significant~see
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1285Blood Flow Simulation and Validation in Large Arteries
section on Small Arteries!. For the large arteries th
viscous effects are small, and hence, we have not
cluded the unsteady term in the earlier equation. Ho
ever, such a term can easily be included by changing
coefficient of]q/]t in the momentum Eq.~12!.

The continuity~6! and momentum~12! equations can-
not be solved analytically so a numerical method
called for. In this work, the equations are solved us
the two-step Lax–Wendroff method, which requires t
equations to be written in conservation form. A cons
vation form can be obtained by introducing the quant
B defined below. Note that the cross-sectional areaA is
regarded as a function of pressure

B~r 0~x!,p~x,t !!5
1

rEp0

p(x,t)

A@r 0~x!,p8#dp8⇒

]B

]x
5

A

r

]p

]x
1

]B

]r 0

dr0

dx
.

The last term can be evaluated explicitly and may, the
fore, be added to both sides of the momentum Eq.~12!.
As a result the conservation form is obtained

]q

]t
1

]

]x S q2

A
1BD52

2pnqR

dA
1

]B

]r 0

dr0

dx
. ~13!

Equations ~6! and ~13! constitute our basic one
dimensional model for propagation of blood flow an
pressure. However, there are two equations for th
dependent variables,p, q, andA. Therefore, a third rela-
tionship ~a state equation! is needed.

State Equation.The aorta and the large arteries conta
smooth muscle, elastin, and collagen. The presence
elastin makes the large arteries capable of consider
expansion and recoil~distensibility!. The distensibility of
the vessels enables them to store pressure energy as
walls are stretched~during systole! and release it as ki
netic energy of flow when the walls are relaxed~during
diastole!. The storage and release of energy helps
propel the blood toward the tissues during the diasto
phase of the cardiac cycle and promotes a more e
flow into the arterioles. The arterioles have a sma
amount of elastin fibers but more smooth muscle fibe
which enables them to regulate the flow by constrict
or dilation of their lumen, e.g., during exercise. How
ever, we assume that the subjects studied are at rest
hence, only the mechanisms of stretch and recoil via
elastin fibers are considered. The distensibility of t
large arteries is not purely elastic but the vessels exh
a viscoelastic behavior.6 However, in order to keep the
model simple, viscoelasticity is disregarded and a sim
f
e

ir

d,

relationship is derived from the linear theory of elast
ity. Using a purely elastic model is reasonable beca
viscoelastic effects are small within the physiologic
ranges of pressure.29 Assume that the vessels are circ
lar, that the walls are thin (h/r 0!1, h being the wall
thickness!, that the loading and deformation are axisym
metric, and that the vessels are tethered in the long
dinal direction. Hence, the external forces can be redu
to stresses acting in the circumferential direction2 and
from what is known as Laplace’s law the circumferent
tensile stress can be found in the form

t5
r ~p2p0!

h
5

E

~12sxsu!

~r 2r 0!

r 0
,

where (r 2r 0)/r 0 is the corresponding circumferentia
strain, E is Young’s modulus in the circumferential d
rection, su5sx50.5 are the Poisson ratios in the ci
cumferential and longitudinal directions. Solving fo
p(x,t)2p0 give

p~x,t !2p05
4

3

Eh

r 0
S 12AA0

A D , ~14!

whereA05pr 0
2 is the cross-sectional area whenp5p0.

The theory that we have just outlined has the prope
that ]p/]A decreases with increasingp ~or A), contrary
to the behavior of real blood vessels, in whichE is not
constant but increases as the arterial wall is stretch
This will be addressed in future work. Here, howeve
we assume thatE is constant~strain independent! at any
given location in the arterial tree. We do, however, allo
the Young’s modulusE to vary from one location to
another. This reflects changes in the elastin conten
the vessel wall at different levels of the arterial tre
Specifically, small arteries are stiffer, and we model t
by making the Young’s modulusE be a function of the
diastolic vessel radiusr 0 according to the following for-
mula based on compliance estimates27,28,31

Eh

r 0
5k1 exp~k2r 0!1k3 . ~15!

Here k152.003107 g/~s2 cm!, k25222.53 cm21, and
k358.653105 g/~s2cm) are constants.21

Boundary Conditions for the Large Arteries

The model derived in the previous section predi
blood flow and pressure for a single vessel segment
order to extend the model to the arterial tree it is nec
sary to establish relevant boundary conditions.

The system of equations is hyperbolic with a positi
wave-propagation velocity much larger than the veloc
of the blood. Consequently, three types of boundary c
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1286 OLUFSEN et al.
ditions must be established:~a! An equation at the inlet
to the arterial tree~i.e., at the aortic valve!; ~b! an equa-
tion at the outflow from each of the terminal vessels
the arterial tree~where the small arteries are attach
through structured trees, see Figs. 1 and 2!; and ~c! three
equations at each of the bifurcations, since three ves
~a parent and two daughter vessels! meet at each such
junction. Each of these boundary conditions should
specified by an equation for either flow, pressure, o
combination of both.

Inflow Boundary Condition.At the inlet to the arterial
tree the flow is specified using a magnetic resona
measurement of the flow in the ascending aorta~see Fig.
3!.

Bifurcation Conditions.Assuming that all bifurcations
occur at a point and that there is no leakage at
bifurcations, the outflow from any parent vessel~pa!
must be balanced by the inflow into the daughter ves
(d1 and d2):

qpa5qd1
1qd2

. ~16!

Vortices can be created at the inlet of the daughter v
sels resulting in some loss of energy. In general the l
of energy at bifurcations is minor.12 Such a loss is cus
tomarily expressed in terms of a loss coefficientK which
appears on the right hand side of the Bernoulli equat

pdi
5ppa1

r

2
~~ ūx!pa

2 2~ ūx!di

2 !2
Kdi

r

2
~ ūx!pa

2 , for i 51,2.

~17!

FIGURE 2. The structured tree „adapted from Olufsen … „see
Ref. 21…. At each bifurcation the radii of the daughter vessels
are scaled by factors a and b. Because of the structure in
the scaling, some of the subtrees scale with the same factor
and for these, the impedance should only be computed
once. For example, the impedance of the subtree „scaled by
ab… branching off to the left of the branch scaled by b has
already been computed in the subtree branching off to the
right of the branch scaled by a.
s

-

In a one-dimensional model the loss coefficients can
be estimated analytically, but they can be found either
three-dimensional computations or by physical expe
ments. In addition, the Bernoulli equation is derived f
steady flow in a rigid pipe and hence it does not stric
apply for pulsatile flow in elastic vessels. Previo
studies1,17,28show that a good approximation which do
account for some loss of energy is assuming press
continuity, i.e., that

ppa5pd1
5pd2

. ~18!

In the simulations presented in this paper Eq.~18! is
used at all bifurcations except for the bifurcation fro
ascending aorta into the aortic arch. At this bifurcati
we used~17! with loss coefficientsK550.75 andK2

50; the numbers in the subscripts refer to the vess
shown in Fig. 1. These coefficients are estimated ba
on studies of flow around a bend of a rigid pipe12 and
adjusted to compare with the measured flows. This
furcation is special because the velocity is maximal b
fore this first major bifurcation which in addition make
a 90° turn. This gives rise to more pronounced vortic
and, hence, a larger loss of energy.

Outflow Boundary Conditions.The small arteries com
prise a collection of binary and asymmetrically stru
tured trees~see Fig. 2!. Each such tree has a variab
number of generations before the arteriolar level
reached, since that level is defined by a particular ves
radius, and it takes a variable number of generations
an asymmetrically branching tree to reach a specifi
radius. In the small arteries that connect the large arte
to the arterioles, viscous effects are more important th
in the large arteries, and inertial effects are correspo
ingly less important. Accordingly, we drop the nonline
terms, but model the viscous effects in greater det
Another simplification is that we treat each vessel
straight. Together, these assumptions allow for
impedance-based analysis, similar to what would be u
for a tree of electrical cables. In particular, we are able
compute the root impedance of each tree of small ar
ies by a recursive numerical procedure. These root
pedances then provide the outflow boundary conditio
for the large arteries. This is the subject of the ne
section.

SMALL ARTERIES

In order to construct the structured trees located at
terminals of the large arteries~see Figs. 1 and 2!, the
characteristics of the small vessels must be mode
Relevant parameters are radius, a bifurcation relati
ship, asymmetry and area ratios, length, and complian
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1287Blood Flow Simulation and Validation in Large Arteries
The structured tree is constructed such that it is g
metrically self-similar. All parameters can be specified
terms of the vessel radius. A power law determines h
the radius changes across bifurcations

~r 0!pa
j 5~r 0!d1

j 1~r 0!d2

j . ~19!

As in ~16!, the subscript pa refers to the parent vess
and the subscriptsd1 and d2 refer to the two daughte
vessels. The power-law has been derived by Murr
Zamir, and Uylings among others18,30 based on principle
of minimum work in the arterial system. The relationsh
is valid for a range of flows;j53.0 is optimal for lami-
nar flow andj52.33 for turbulent flow. In arterial blood
flow a good choice26 for the exponent isj52.76.

Combined with equations determining the area a
asymmetry ratios, the power law can be used to de
mine linear scaling ratios between the radii of the dau
ter vessels and the radius of the parent vessel

~r 0!d1
5a~r 0!pa, ~r 0!d2

5b~r 0!pa

and

~r 0!k,n5akbn2kr 0 . ~20!

In these equationsa and b are constants that characte
ize the asymmetry of the tree~see Fig. 2!. Their values
will be determined later. The generation number is d
noted byn, with n50 corresponding to the vessel th
forms the root of the tree. The constantr 0, with no
further subscript, refers to the radius of the root ves
There may be as many as 2n vessels in thenth genera-
tion; however, because some branches may already
terminated, this number will often be smaller. In add
tion, there are at mostn11 different size branches in
generationn, corresponding tok choices of the scaling

FIGURE 3. The inflow as a function of time. The inflow is a
periodic repetition of data measured in the ascending aorta
„at A in Fig. 1 … during one period lasting 1.1 s.
e

factor a, andn–k choices of the scaling factorb, where
0<k<n.

The structured tree continues to branch until the
dius of any vessel is smaller than some given minim
value (r min). The arterioles are muscular vessels whi
are able to dilate and contract severalfold regulating
supply of blood to the tissue. Assume that the subj
studied is at rest. Then, the minimum radius can
selected such that the resistances of the structured
correspond to the resistances of the vascular beds.

The asymmetry of the vessels can be characteri
from the area (h) and asymmetry (g) ratios,34 which can
be defined by

h5
~r 0!d1

2 1~r 0!d2

2

~r 0!pa
2

and g5S ~r 0!d2

~r 0!d1

D 2

.

The parametersj, h, andg are not independent but ar
related by

h5
11g

~11gj/2!2/j
. ~21!

Consequently, if the area-ratioh and the exponentj are
known, the asymmetry-ratiog can be calculated. Using
an area ratio ofh51.16 and the powerj52.76, the
asymmetry-ratiog50.41. The area-ratioh and the ex-
ponentj have been estimated based on studies by Pa
georgiouet al.22 and Uylings30 The scaling parametersa
and b can be found fromj and g:

a5~11gj/2!21/j50.9 andb5aAg50.6. ~22!

The length of each vessel can be related to the rad
using a constant length-to-radius ratio. Based on stud
by Iberall11 we have chosen the length-to-radius ra
l rr5L/r 0'50. Iberall estimated this length-to-radius rat
based on branches from the small arteries such as
renals, the femoral arteries, the mesenteric arteries,
the cerebral artery.

In order to compute the compliance of the small a
teries, information on how the wall-thicknessh and
Young’s modulusE change or depend on other param
eters throughout the tree is needed. Such a relation
has been estimated for the large arteries and the s
arteries are essentially composed of the same type
tissue, hence,~15! has been taken to apply for the sma
arteries and arterioles.

As in the case of the large arteries, equations
blood flow and pressure in the small arteries can
derived from the axisymmetric Navier–Stokes equatio
However, while inertia effects are more important in t
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1288 OLUFSEN et al.
large systemic arteries, viscous effects become more
portant in the small arteries.6 Hence, we neglect the
nonlinear inertial terms. This approach is based on
work originally discussed by Womersley, but later r
fined by Pedley and Atabek and Lew.2,20,24,32Assuming
that the flow and pressure are periodic, the momen
Eq. ~7! can be written as a Bessel equation, which can
solved analytically. This analytical solution provides
frequency-dependent relationship between flow and p
sure in the form of an impedance condition.

Fluid Dynamic Equations for the Small Arteries

Linearizing the momentum Eq.~7! yields

]ux

]t
1

1

r

]p

]x
5

n

r

]

]r S r
]ux

]r D . ~23!

Assuming that all variables are periodic they can
written in the form ux(r ,x,t)5Ux(r ,x)eivt, p
5P(x)eivt. Hence,~23! can be written as

ivUx1
1

r

]P

]x
5

n

r

]

]r S r
]Ux

]r D . ~24!

Since the small vessels do not taper, the solution to~24!
is given by

Ux5
1

ivr

]P

]x S 12
J0~rw0 /r 0!

J0~w0! D , ~25!

where w0
25 i 3w2 (w25r 0

2v/n is the Womersley number!
andJ0(x) andJ1(x) are the zeroth and first order Bess
functions. Similar to the large arteries the flow-rateq
5Qeivt is given by

Q52pE
0

r 0
Uxrdr⇔ ivQ5

2A0

r

]P

]x
~12FJ!, ~26!

where

FJ5
2J1~w0!

w0J0~w0!
. ~27!

The viscous stresst rx5Teivt by the wall on the fluid can
be determined from the solution to the lineariz
Navier–Stokes Eq.~23!:

T5m
]Ux

]r U
r 5r 0

5
m

A0r 0

w0
2FJ

2~12FJ!
Q. ~28!

Expanding~28! for small values of w0 yields
-

-

T5
m

A0r 0
F241

w0
2

6
1O~w0

4!GQ⇔

t rx52
4m

A0r 0
F11

r 0
2

24n

d

dt
1O~v2!Gq.

~29!

The first term of~29! is similar to the viscous stress~11!
obtained from the simple boundary-layer consideration
~10! except that the above term corresponds to a pa
bolic velocity profile. The second term corresponds
the unsteady term obtained by Young and Tsai.33 How-
ever, they modified the coefficients based on empiri
data.

The one-dimensional continuity equation for the sm
arteries is the same as the one for the large arter
Using the state Eq.~14! the continuity~6! can be written
as

C
]p

]t
1

]q

]x
50, C5

]A

]p
,

whereC is the compliance. The compliance can be a
proximated by linearizing the state Eq.~14!:

C5
]A

]p
5

3A0r 0

2Eh S 12
3pr0

4Eh D 23

'
3A0r 0

2Eh
, ~30!

sinceEh@pr0.
Because the inflow into the arterial tree is periodic t

flow and pressure will be periodic, and hence they c
be expressed using complex periodic Fourier series
the form

f~x,t !5 (
k52`

`

F~x,vk!e
ivkt,

F~x,vk!5
1

TE2T/2

T/2

f~x,t !e2 ivktdt,

wherevk52pk/T. The Fourier series should be used f
f5p(x,t),q(x,t),z(x,t) or in the frequency domainF
5P(x,v),Q(x,v),Z(x,v). Using the Fourier series an
the compliance approximation in~30! the continuity
equation can be transformed as

ivCP1
]Q

]x
50. ~31!

The momentum~26! and continuity ~31! equations
determine the flow resulting from an oscillatory pressu
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1289Blood Flow Simulation and Validation in Large Arteries
gradient in a straight vessel where the amplitude a
phase depend on the compliance of the wall and
viscosity of the blood. The equations are periodic w
period T and apply to any vessel of lengthL. Differen-
tiating ~31! with respect tox and inserting the result in
~26! gives a reduced wave equation of the form

v2

c2
Q1

]2Q

]x2
50 or

v2

c2
P1

]2P

]x2
50 ~32!

with the wave-propagation velocity

c5AA0~12FJ!

rC
. ~33!

Solving ~31! and ~32! yields

Q~x,v!5a cos~vx/c!1b sin~vx/c!,

P~x,v!5 iA r

CA0~12FJ!
~2a sin~vx/c!

1b cos~vx/c!!,

wherea and b are arbitrary constants of integration.
Using the terminology from electrical cables, withP

playing the role of voltage andQ playing the role of
current, the impedanceZ(x,v) can be related to pressur
and flow by

Z~x,v!5
P~x,v!

Q~x,v!
5

ig21~b cos~vx/c!2a sin~vx/c!!

a cos~vx/c!1b sin~vx/c!
,

whereg5cC5ACA0(12FJ)/r. At x5L

Z~L,v!5
ig21~b cos~vL/c!2a sin~vL/c!!

a cos~vL/c!1b sin~vL/c!

and atx50:

Z~0,v!5
i

g

b

a
, ~34!

where

b

a
5

sin~vL/c!2 igZ~L,v!cos~vL/c!

cos~vL/c!1 igZ~L,v!sin~vL/c!
.

Insertingb/a into ~34! gives
Z~0,v!5
ig21 sin~vL/c!1Z~L,v!cos~vL/c!

cos~vL/c!1 igZ~L,v!sin~vL/c!
. ~35!

For any vessel, the input impedance for zero frequen
or in the electrical terminology the direct current~DC!
impedance, can be found as

Z~0,0!5 lim
v→0

Z~0,v!5
8m l rr

pr 0
3

1Z~L,0!, ~36!

where l rr5L/r 0 is the length-to-radius ratio. Equatio
~36! suggests that in general~for any network! the root
impedance will be proportional tor 0

23. Since the struc-
tured tree is terminated when the radius of any branc
smaller than some given minimum value,r min , the con-
stant of proportionality cannot be derived analytically

Boundary Conditions for the Small Arteries

Analogous to the large arteries, Eqs.~26! and ~31!
predict blood flow and pressure for a single vessel s
ment. In order to compute the impedance at the root
the structured tree it is necessary to establish relev
boundary conditions. In this case, the relevant bound
conditions are outflow boundary conditions and bifurc
tion conditions.

Bifurcation Conditions.The bifurcation conditions are
similar to those established for the large arteries. As
the case of the large arteries we assume that there i
leakage at the bifurcation so that the flow is conserv
Moreover, the pressure is continuous since any pres
difference across a junction, which would arise due
the nonlinear terms, is being neglected. Therefore,
bifurcation is analogous to a transmission-line netwo
where the admittances (Y51/Z) add

1

Zpa
5

1

Zd1

1
1

Zd2

. ~37!

Outflow Boundary Conditions.Since viscosity is taken
into account in the fluid dynamics of the structured tre
it is not necessary to include lumped resistance elem
at the leaves of the structured tree, i.e., the termi
resistance of the structured trees can be set to zero.
various parts of the body serve different needs and he
show a variation in the peripheral resistance. Having
zero terminal resistance for the structured trees thus
quires that the minimum radii (r min) at the terminals are
chosen individually for each of the structured tree
While r min may vary among the different structure
trees, it is kept constant within each of them.
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1290 OLUFSEN et al.
THE ROOT IMPEDANCE OF THE SMALL
ARTERIES AND COUPLING OF SMALL AND

LARGE ARTERIES

As described earlier, all parameters for the structu
tree are determined as functions of the vessel rad
Hence,g and the lengthL can be determined as func
tions of the vessel radius. Furthermore, the geome
self-similarity makes it possible to compute the root im
pedanceZ(0,v) for each of the structured trees shown
Fig. 1. Since the terminal impedance is known~and con-
stant! within each of the structured trees, the impedan
at the beginning of all the terminal vessels can be fou
using ~35!. Jumping up one generation, the impedance
the end of all parent vessels can be found using~37!.
Again ~35! can be used to find the impedance at t
beginning of the vessels at this level. Continuing in th
manner the impedance can be found at the root of
structured tree~for details see Algorithms for the Sma
Arteries in Appendix B!. Computing the root impedanc
using the method described earlier would be very exp
sive if the structure of the small arteries were not a
counted for. As shown in Fig. 2, some subtrees sc
with the same factors as subtrees in which the impeda
has already been computed. Assuming that all term
branches are terminated with the same peripheral re
tance, subtrees with identical paths will have the sa
root impedance, and need not be re-evaluated. This s
ture reduces the computation from orderO(2n) to O(n2)
where n is the maximum number of generations of t
structured tree.

As stated earlier, a complete binary tree hasn

branches at thenth generation. In our case the tree
structured such that the radii of the vessels at thenth
generation are given by~20!. For the whole tree withn
generations there would be

(
j 50

n

(
k50

j

15
~n11!~n12!

2
5O~n2!

different impedances which must be calculated. For
structured tree~see Fig. 2! some branches terminate ear
and hence the number of impedances that must be
culated is smaller.

By inverse Fourier transform the results forZ(x,v)
can then be transformed to obtainz(x,t). Using the con-
volution theorem it is possible to arrive at an analy
relationship betweenp and q:

p~x,t !5E
t2T

t

q~x,t!z~x,t2t!dt. ~38!

This new outflow boundary condition for the large arte
ies should be evaluated for each of the terminals of
.

e
l
-

-

l-

large arteries~see Algorithms for the Small Arteries in
Appendix B!.

In order to evaluate the above convolution integ
~38! for all times during a period, the impedanceZ(v)
should be determined for all discrete angular frequenc
vk52pk/T, where k52N/2, . . . ,N/2 and N is the
number of timesteps per period. Assuming thatz(x,t) is
real, Z must be self-adjoint

Z~0,v2k!5Z~0,vk!.

Hence, only Z(0,vk) for k50,1, . . . ,N/2 need to be
determined.

RESULTS

Our aim was to show that the structured tree mo
provides a feasible outflow boundary condition for det
mining blood flow and pressure in the large arteries. W
verified that our model can reproduce the essential ch
acteristics of the arterial pulse both qualitatively a
quantitatively by comparing our model with data me
sured using magnetic resonance techniques.

All simulations in this paper were based on the sa
set of parameters. Most lengths and diameters w
based on magnetic resonance measurements. At loca
where measured data were not available, lengths
diameters were estimated from combining literature d
with measured and computed flows. All geometric p
rameters used to specify the large arteries are show
Table 1. The parameters representingEh/r 0 were chosen
using~15!, while density (r51.055 g/cm3) and viscosity
(m50.049 g/~cm s!! were kept constant. The paramete
for the structured trees followed the choices discusse
the section on Small Arteries. The terminal resistan
for the small arteries were all set to zero. In order to ta
the variation in peripheral resistance into account, fo
different minimum radii r min50.01,0.02,0.03 cm were
chosen for the structured trees~see Table 1!.

The total cross-sectional area of the systemic arte
increases from 5 cm2 at the root of the aorta to 400 cm2

at the arterioles. The maximum~systolic! pressure of the
large arteries increases away from the heart, towards
periphery, while the mean pressure decreases.6 The in-
crease of systolic pressure is mainly due to tapering
branching of the large arteries and the peripheral re
tance in the arterioles. As a result of these features
flow and pressure waves are reflected. In the large ar
ies, the reflected wave is superimposed on the pres
wave, increasing the systolic pressure. At the same t
the large increase in cross-sectional area causes a
crease in mean pressure. Within each of the vessels
same effect can be seen on the flow wave, however
the bifurcations the flow decreases. These effects w



an
re-
be
at

s
to-
ve-
g’s

so-
kg

was
od

ure
d a

he
s-

8.

ns
od
use
sed
ere

the
a

e
ar-
the

s-
on
re-

and

1291Blood Flow Simulation and Validation in Large Arteries
also present in our simulations~see Figs. 4–6!. Further-
more, the velocity of the reflected wave is slower th
the velocity of the main wave. Consequently, the
flected wave separates from the incoming wave and
comes more prominent at peripheral locations than
proximal locations9,16 ~see Fig. 4!. Finally, the steepnes
of the incoming pressure and flow profiles increases
wards the periphery. This is due to changes in the wa
propagation which, because of an increased Youn
modulus, is larger for the small vessels4 ~see Fig. 5!.

The flow data were measured using magnetic re
nance techniques in a 32 year old male weighing 65
and being 178 cm tall. His average heart rate at rest
51 beats per minute and his systolic and diastolic blo
pressures were 120/80 mmHg~measured with a cuff!; for
further details see Appendix A. These pressure meas
ments corresponded well to the pressures compute
the left subclavian artery~see Fig. 8!.

The flows shown in Fig. 7 were measured at t
locations identified in Fig. 1. The corresponding pre
sures, computed using our model are shown in Fig.

TABLE 1. Geometrical data, i.e., length, inlet „top … and outlet
„bottom … radii, and the minimum radius for the structured
trees. The numbering in the left column refers to the numbers
shown in Fig. 1. Data labeled m are measured on the magnetic
resonance images and data labeled e are estimated. All the
measured radii and lengths have an accuracy of Á 1 mm. In
the computations, the values listed in the table are used „with
two decimal points …; these values are selected so as to
approximately match the measured radius accounting for the

exponential tapering defined in Large Arteries.

No. Artery
L

(cm) rt (cm) rb (cm)
rmin
(cm)

1 Ascending aorta m 7.0 1.25 1.14 •••
5 Aortic arch m 1.8 1.14 1.11 •••
7 Aortic arch m 1.0 1.11 1.09 •••
9 Thoracic aorta m 18.8 1.09 0.85 •••

11 Abdominal aorta m 2.0 0.85 0.83 •••
13 Abdominal aorta m 2.0 0.83 0.80 •••
15 Abdominal aorta m 1.0 0.80 0.79 •••
17 Abdominal aorta m 6.0 0.79 0.73 •••
19 Abdominal aorta m 3.0 0.73 0.70 •••
20 External iliac m 6.5 0.45 0.43 •••
21 Femoral m 13.0 0.43 0.40 •••
24 Femoral e 44.0 0.40 0.30 0.01
22 Internal iliac e 4.5 0.20 0.20 0.01
23 Deep femoral e 11.0 0.20 0.20 0.01

2 Anonyma e 3.5 0.70 0.70 •••
3, 8 Subcl. and brach. e 43.0 0.44 0.28 0.01

4 R. com. carotid e 17.0 0.29 0.28 0.02
6 L. com. carotid e 19.0 0.29 0.28 0.03

10 Celiac axis e 3.0 0.33 0.30 0.02
12 Sup. mesenteric e 5.0 0.33 0.33 0.02

14,16 Renal e 3.0 0.28 0.25 0.02
18 Inf. mesenteric e 4.0 0.20 0.18 0.01
-

-
t

CONCLUSION

The purpose of this study was to derive the equatio
and boundary conditions needed for predicting blo
flow and pressure in the systemic arteries and to
these in a case study in which the geometry was ba
on anatomical data and the other model parameters w
based on physical laws but adjusted to compare with
measured flow profiles. This was achieved by using
one-dimensional fluid-dynamics model, including th
large and small arteries. The geometry of the large
teries was modeled combining measured data for
vessel length, inlet~top! and outlet~bottom! radii with an
empirical law modeling the exponential taper of the ve
sels. The geometry of the small vessels was based
literature data and adjusted such that the peripheral
sistance matched the measured flows. For large

FIGURE 4. The graphs show pressure „mmHg … as a function
of space x and time t. The top graph shows the pressure
along the aorta and the bottom graph shows the pressure of
the subclavian and brachial arteries. The reason why the
aortic pressure has a discrete jump after 7 cm is the loss of
energy between the ascending aorta, anonyma, and the aor-
tic arc „vessels 1, 2, and 5 in Fig. 1 …. The pressure in the
subclavian and brachial arteries initially increases and then
decreases in order to accommodate the boundary condition
arising from the structured tree.
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1292 OLUFSEN et al.
small vessels the flow and pressure were determi
using the one-dimensional theory derived from t
Navier–Stokes equations. For the large arteries, flow
pressure were determined at all points along the ves
but for the small arteries~the terminals of the large
arteries! an impedance relationship~pressure versus flow!
constituting a boundary condition for the large arter
was determined.

Figures 4–6 show that the resulting pressure and fl
profiles all have the correct characteristics. The syst
pressure increases away from the heart. The mean p
sure drops slowly. The steepness of the incoming p
sure profile increases towards the periphery. Finally,
wave propagation velocity of the reflected dicrotic wa
is slower than that of the main wave, and hence,
reflected wave separates from the main wave perip
ally. This can be seen in Fig. 4, where the distan
between the main pressure wave and smaller refle
~the dicrotic! wave is increased towards the periphery.
addition to showing reasonable characteristics, our
sults reveal that the one-dimensional model provides

FIGURE 5. The graph shows the aortic pressure at four lo-
cations along the aorta. From these profiles it becomes easy
to see that the steepness of the wave front is increased at
more peripheral locations.

FIGURE 6. The graph shows the decrease of the mean pres-
sure along the aorta.
s

-
-

-

d

excellent quantitative agreement with measured data.
a correct quantitative comparison, measurements
computations were carried out in vessels where the
ometry and inflow were matched. The reason for t
was that the pressure and flow profiles are highly dep
dent on these factors and vary significantly even amo
healthy young people.19

The advantage of modeling the small arteries by
plying structured trees at all terminals of the large art
ies is that it gives a physiological boundary conditio
which is able to include wave-propagation effects. F
thermore, the structured tree model has only two para
eters that need to be estimated, the compliance of
vessels and the radii at which the structured trees
terminated. Because we did not apply any impedance
the terminals of the structured tree, the peripheral imp
ance for the large arteries was obtained entirely from
solution to the linearized equations in the binary asy
metrically structured tree.21

As mentioned in Small Arteries, the diameter of th
small arteries varies considerably and so does the per
eral resistance of these very small vessels which hav
strong muscular wall. This is consistent with th
observations10 that it is the arterioles, and not the cap
laries, which generate the peripheral resistance. The t
peripheral resistance of the different organs vary, hen
it is important to choose the minimum radius individ
ally for each of the structured trees, i.e., for each of
terminal branches of the large arteries. However, unl
the diameters of the small vessels are changed dyna
cally during the time course of a simulation the mod
does not reflect dynamics due to auto- or barorecep
regulation. The simulations in this paper do not incorp
rate dynamic change of the small vessels and hence
flect that the individual studied is at rest.

In summary, our study has shown the feasibility
limiting the computational domain such that blood flo
and pressure can be predicted using a one-dimensi
model consisting of large and small arteries. The co
putational domain is limited because of our use of t
structured tree outflow conditions. The structure of t
trees representing the smaller vessels allows the c
plexity of the computations to be decreased fromO(2n)
to O(n2), wheren is the number of generations in th
structured tree. Furthermore, since the structured tr
represent branching vessels, we are able to model
propagation of the wave through the small vessels
thus determine a dynamic impedance characterizing
underlying physiology.19,21

One might argue that the structured tree model is
complicated and that the much simpler windkessel mo
is adequate because it can also provide a dynamic
flow boundary condition. The windkessel model is bas
on parameters describing the total resistance
compliance.28 It has been shown that the windkess
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FIGURE 7. Measured and simulated flows. The letter in parenthesis indicates where the flow is measured as shown in Fig. 1.
The figure shows the nine flows measured peripherally to the ascending aorta „the inflow into the arterial tree, see Fig. 3 ….
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model cannot capture the dynamics of high
frequencies.21 Moreover, it is not obvious how the wind
kessel parameters should be estimated for the large
sels. However, it is possible to relate the parameters
the commonly used windkessel model to our structu
tree model, which would enable comparison of the t
models. The total resistance of the windkessel mo
corresponds to the DC impedance of the structured t
while the peripheral resistance corresponds to the h
frequency limit of the structured tree. Finally, the tot
compliance of the windkessel model can be related to
slope at which the impedance of the structured tree
creases from zero frequency towards higher frequenc

Nevertheless, we find that the structured tree mo
has several important advantages. The structured tre
based on the underlying physiology and it includes wa
propagation effects which enable our model to capt
the observed oscillations of the impedance in the par
-
f

,
-

-
.

s

the arterial system that it models. Second, the structu
tree model can predict flow and pressure not only in
large but also in the small arteries, i.e., shifting the p
pose of the structured tree from being a boundary c
dition to being a more active part of the model.

The idea of using a structured tree in which a simp
set of equations is solved could also be applied to ot
areas involving flow in tree-like structures such as flo
and water depth in a river delta. However, the use of
outflow boundary condition presented here is only app
cable to phenomena in which there is some scaling
that gives rise to a structured tree.

APPENDIX A: MAGNETIC RESONANCE
IMAGING

Written informed consent was obtained from the su
ject in accordance with the regional ethical committee
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FIGURE 8. Simulated pressures corresponding to the flows shown in Fig. 7.
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human research and the Helsinki Declaration. The s
ject was a 25 years old healthy male subject without a
known cardiac disease with a body surface area of 1
m2. The magnetic resonance imaging~MRI! investiga-
tion was performed on a 1.5 T whole body system~Gy-
roscan ACS-NT 15, Philips Medical Systems, Best, T
Netherlands!. The subject was examined in the supi
position. To minimize motion artifacts caused by he
motion, image acquisition was synchronized to theR
wave of the electrocardiogram~ECG!. The body coil was
used for radio frequency transmission while circular s
face coils and a dedicated five-element cardiac syne
coil was used as receiver for the peripheral and gre
vessels, respectively. Multistack, multislice gradient-ec
scouts were performed at each vessel location to estim
the geometry of the different vessels for the quantitat
flow measurements. Based on these scout images, t
verse gradient-echo, velocity-encoded images were
r

e

s-
-

quired. The imaging parameters were echo time 6.3
time resolution 30 ms, flip angle 20°, spatial in-pla
resolution 1.2531.25 mm, slice thickness 6 mm, tw
signal averages, and velocity encoding680 cm/s. Total
imaging time for a complete measurement series w
approximately one hour with an average heart rate of
beats per minute.

MRI Data Analysis

The volumetric flow rates from the different vesse
were calculated as the product of the cross-sectional
and spatial mean velocity in each time frame. The v
locity was calculated from the magnetic resonance ph
images assuming linearity between magnetic resona
signal phase and velocity. The vessel cross-sectiona
eas were automatically segmented using active con
model algorithms to define the vessel boundaries.15 In
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addition, velocities above the Nyquist limit of680 cm/s
were manually unwrapped by adding the velocity va
corresponding to62p.

APPENDIX B: ALGORITHMS

Discrete Fluid Dynamic Equations for the Large
Arteries

For the large vessels it is necessary to compute fl
and pressure for each of the vessels, but for the sm
vessels only the impedances at the terminals of the la
vessels~at the outflow! are of interest. For the larg
vessels the equations are solved using the two-step L
Wendroff method and for the small vessels the equati
are solved using a recursive approach.

The continuity ~6! and momentum~13! equations in
conservation form can be solved using the two-s
Lax–Wendroff method. Using the state Eq.~14! the
pressure terms of the continuity and momentum eq
tions can be expressed as functions ofA. Hence, the
continuity and momentum equations can be solved foq
and A. The flux of ~6! and ~13! are given by

R5~R1 ,R2!5S q,
q2

A
1BD ~B1!

and the right-hand side by

S5~S1 ,S2!5S 0,2
2pnqR

dA
1

]B

]r 0

dr0

dx D . ~B2!

Using the definitions forR and S, and assuming tha
U5(A,q) the continuity~6! and momentum~13! equa-
tions can be written as

]

]t
U1

]

]x
R5S.

Assume that the grid is uniform with the distance b
tween any two grid-points being given byDx andDt for
the spatial and temporal axes, respectively~see Fig. B1!.
Then, the Lax–Wendroff method is stable if the Coura
Friedrichs Lewy ~CFL! condition8 is fulfilled for both
choices of sign

Dt

Dx
<UqA 6cU21

,

whereq/A6c is the characteristic wave-propagation v
locity, q/A is the mean velocity and
l

c5AA

r

]p

]A

is the wave speed~for details see Olufsen!.20

Define Um
n 5U(mDx,nDt) where 0,n<N denotes

the current time step~and not generations of the struc
tured trees as in previous sections! and 0,m<M de-
notes the position along a vessel divided intoM subin-
tervals. Similarly definitions can be made forR and S.
The flow q and cross-sectional areaA at time-level (n
11) can be found from

Um
n115Um

n 2
Dt

Dx
~Rm11/2

n11/22Rm21/2
n11/2 !

1
Dt

2
~Sm11/2

n11/21Sm21/2
n11/2 !. ~B3!

The intermediate valuesRm11/2
n11/2 , Sm11/2

n11/2 , Rm21/2
n11/2 , and

Sm21/2
n11/2 at time-leveln11/2 can be found using~B1! and

~B2! combined with

Uj
n11/25

Uj 11/2
n 1Uj 21/2

n

2

1
Dt

2 S 2
Rj 11/2

n 2Rj 21/2
n

Dx
1

Sj 11/2
n 1Sj 21/2

n

2 D
for j 5m11/2 and j 5m21/2.

Discrete Boundary Conditions for the Large Arteries

In order to use the two-step Lax–Wendroff scheme
the boundaries, a boundary condition must be appl
This can be done by combining the boundary conditio
with the Lax–Wendroff scheme~B3! and solving forq
andA. Details follow for the different types of boundar
conditions that we have to consider.

Inflow Boundary Condition.The inflowq into the aorta is
given by the periodic function shown in Fig. 3. Insertin
q into ~B3! gives a nonlinear equation forA, which can

FIGURE B1. The values of q and A at n¿1 are determined in
two steps. During the first step, intermediate values at n
¿1Õ2 are determined from values at n. At the second step the
values at n¿1 are determined from the intermediate values.
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1296 OLUFSEN et al.
be solved using Newton’s method. The Lax–Wendr
scheme ~B3! requires evaluation ofq21/2

n11/2 which, as
shown in Fig. B2, can be found as follows

q0
n11/25

1

2
~q21/2

n11/21q1/2
n11/2!⇔q21/2

n11/252q0
n11/22q1/2

n11/2.

~B4!

Outflow Boundary Conditions.The outflow boundary
condition for the large arteries should be evaluated
each of the terminal vessels~see Fig. 1!, i.e., at xL

5MDx, wherexL is the length of the vessel andM is
the number of subintervals along the vessel. For a
given terminal vessel the outflow boundary condition
determined by the convolution integral~38!

p~xL ,t !5E
t2T

T

q~xL ,t2t!z~xL ,t!dt,

which can be discretized by

p~MDx,nDt !5pM
n 5qM

n yM
0 Dt1 (

k51

N21

qM
^n2k&NzM

k Dt,

~B5!

where t5nDt is the current time,N is the number of
timesteps per period, and̂•&N denotes the modulo op
erator, the range of which is the set$0,1, . . . ,N21%.
The sum in~B5! contains the terms from this and th
previous period depending on the value ofk, see Fig. B3.

Evaluating the outflow boundary condition is a b
subtle, sincep(xL ,t) ~and hence,A) is not known ex-
plicitly, but only as a function ofq. Consequently, in-
serting the outflow boundary condition~B5! into the
Lax–Wendroff scheme~B3! gives rise to a system o
nonlinear equations which can be solved using Newto
method~for details see Olufsen!.20

FIGURE B2. Left boundary: All variables are known at the
points marked with a cross. In order to determine the value
of A 0

n¿1, we apply the boundary condition for q 0
n¿1Õ2 at the

point marked with a square, and from taking the average of
this point and the point at „1Õ2,n¿1Õ2… it is possible to de-
termine an approximate value at the ghost point marked with
a circle. Finally, A 0

n¿1 can be found using this construction
and the Lax–Wendroff scheme „B3….
Bifurcation Conditions.Bifurcations represent an outflow
boundary for the parent vessel and an inflow bound
for the daughter vessels. In this case, the bifurcat
conditions ~16! and ~18! must be combined with the
Lax–Wendroff scheme~B3! to solve for qM and AM ,
M5M for the parent vessel andM50 for the daughter
vessels. As in the case of the inflow boundary conditi
ghost points are introduced in order to get these e
mates. As described in the section on Boundary Con
tions for the Large Arteries, the case study presented
this paper use~18! for all bifurcations except for the
bifurcation from the ascending aorta into anonyma a
the aortic arc. In the latter bifurcation the energy loss
substantial and~17! is used instead of~18!. In the bifur-
cations using~16! and~18! together with the ghost point
we can find (qi)M

n11/2 and (Ai)M
n11/2, where i

5pa,d1 ,d2. Hence, the bifurcation conditions, at time
level n11/2 andn11, lead to the following equations
Conservation of flow~16! across the bifurcation

~qpa!M
j 5~qd1

!0
j 1~qd2

!0
j ~B6!

and the pressure condition~18!

~pdi
!0

j 5~ppa!M
j , ~B7!

where i 51,2 and j 5n11/2,n11. The latter equation
can be written in terms ofA using the state Eq.~14!:

~ f di
!0S 12A~Adi

!0

~Adi
!0

j D 5~ f pa!MS 12A~A0pa!M

~Apa!M
j D ,

~B8!

wherei 51,2, j 5n1 1
2,n11, andf (r 0)54Eh/(3r 0) rep-

resents the changing stiffness or compliance of the v
sels. Note that if~17! is used instead of~18! Eqs. ~B7!
and ~B8! should be modified accordingly.

As in the case of the large arteries, combining t
bifurcation conditions~B6! and ~B8! with the Lax–
Wendroff scheme~B3! yields a number of nonlinea

FIGURE B3. The discretized convolution integral „38… runs
over a whole period. For a given time tÄn Dt the values for p
predicted from this period is used for kÄ1, . . . ,n and the
values predicted in the previous period for kÄn¿1, . . . ,N
À1.
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1297Blood Flow Simulation and Validation in Large Arteries
equations which can be solved using Newton’s meth
~again, see Olufsen20 for details!.

Algorithms for the Large Arteries

In the case study presented in this paper the l
coefficients are set to zero, except in the bifurcation fr
the ascending aorta into the aortic arc and anonyma. T
has the advantage that all parameters specific to a g
vessel can be specified locally. The parameters spec
for each vessel are: length (L), inlet radius (r t), outlet
radius (r b), pointers to daughter vesselsd1 and d2 ~art
@d1# and art@d2#!, radius at which the structured tre
should be terminated (r min), number of points per vesse
(#), thevessel stiffness constants (k1 , k2 , k3), and loss
coefficients (Kd1

, Kd2
) where appropriate~as discussed

earlier!. Note, if the vessel has daughters, the param
specifying the minimum radius should be zero. If t
vessel is terminal, no pointers are needed for daug
vessels, but the parameter specifying the minimum rad
must be set. For each vessel, the parameter values
cific to the vessel will be specified when the tree
initialized. Algorithm 1 describes initialization of the a
terial tree shown in Fig. B4 and algorithm 2 describ
the solution to the hyperbolic equations in~6! and ~13!.

Algorithm 1: The Arterial Tree

j Number of vessels in the network~nbrves53!.
j Starting time for the simulation~tstart50!.
j Ending time for the simulation~finaltime56!.
j initialization of the arterial tree ~art5new

ves*@nbrves#!.
j art@3#5new ves@1.0,1.11,1.09,0,0, (r min)3,4,k1 ,

k2 , k3,0,0#.
j art@2#5new ves@19.0,0.29,0.28,0,0, (r min)2,4,k1 ,

k2 , k3,0,0#.
j art@1#5new ves~1.8,1.14,1.11,art@2#,art@3#, 0,4,k1 ,

k2 , k3,0,0!.

FIGURE B4. An arterial tree with three branches. For each
branch its length, inlet and outlet diameters are specified.
The example shown in this figure corresponds to the bifur-
cation from the aortic arc into the carotid artery and the
descending aorta „from 5 into 6 and 7 on Fig. 1 ….
n
d

r

r

e-

The array ‘‘art’’ comprises information about the ve
sels shown in Fig. B4; art@3# comprise vessel 7, art@2#
vessel 6, and art@1# vessel 5. The number of the vesse
in Fig. B4 correspond to the numbers in the full arter
tree ~see Fig. 1!. However, since vessels 6 and 7 do n
correspond to terminal vessels in the full arterial tree,
have left out values for the minimum radii and inste
noted that a minimum radius must be provided at
appropriate location.

Algorithm 2: Solving the Equations for the Large
Arteries

j While t , finaltime @-1.125cm#
c For all vessels do@-0.75cm#

s Check that the CFL-condition applies.
s Solve the equations for all interior point

using the Lax–Wendroff scheme~B3!.
s Update the inlet boundary condition~B4!

for the vessel connected to the hea
~art@1#!.

s Check if the vessel has daughters. Use
bifurcation conditions~B6! and ~B8! if
the vessel has daughters, otherwise
vessel is terminal and the outflow boun
ary condition~B5! should be used.

Algorithms for the Small Arteries

The recursive approach to compute the root imp
ances of the structured trees is described in algorithm
and 4. Assume that the number of timestepsN, a root
radius (r root) and the minimum radius (r min) has been
given.

Algorithm 3: The Root Impedance Z(0,v)

j For each frequency determineZ(0,v) as follows:
Compute the impedance forN values ofv. Since
Z is self-adjoint the impedance can be comput
using the following two steps.
c For k5N/211,N11 do

s Let all previous computed results be res
to zero. Use the list ‘‘comp’’ to store
temporary results such that it is not ne
essary to reevaluate identical parts of t
structured tree.

s Find Z(0,v) recursively using the func-
tion Z0(vk,0,0), which is described in Al-
gorithm 4.

c Apply self-adjointness by

Z~0,vk!5Z~0,vk1N/2!.

j Determinez(0,t) by inverse Fourier transform o
Z(0,v).
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1298 OLUFSEN et al.
Algorithm 4: Recursive computation of Z0(vk ,na ,nb)

~1! Compute all parameters for the vessel and initial
the array ‘‘comp’’ to zero:

j Radiusr 05anabnbr root.
Note, na and nb correspond to specific values o
k andn2k in Eq. ~20!; this new notation is more
convenient for the present description.

j Cross-sectional areaA05pr 0
2.

This definition is similar to the one for the larg
arteries defined above Eq.~4!.

j Stiffness/compliancef (r 0)54Eh/(3r 0).
This factor is defined below Eq.~B8!.

j Vessel lengthL5r 0l rr .
This factor is defined below Eq.~36!.

~2! Compute the wave-propagation velocityc ~33! and
the scalarg @defined above Eq.~34!#. These depend
on FJ ~27! and thus on the Womersley numberw
@defined below Eq.~25!#.

~3! Recursive algorithm:
j If r 0,r min then

c ZL(vk ,na ,nb)5terminal resistance.
j else

c If the root impedance of the left daughte
(na11,nb) has been computed previously the

s Z0(vk ,na11,nb)5 comp(na11,nb).
c else

s Compute the root impedance of the le
daughter by callingZ0(vk ,na11,nb) re-
cursively.

s If the root impedance of the right daught
(na11,nb) has been computed previous
then Z0(vk ,na ,nb11)5 comp(na ,nb

11).
s else Compute the root impedance of t

right daughter by callingZ0(vk ,na ,nb

11) recursively.
j ZL(vk ,na ,nb)51/@Z0

21(vk ,na11,nb)
1Z0

21(vk ,na ,nb11)], ~37!.
~4! If vkÞ0 then

j Z0(vk ,na ,nb)

5
ig21sin(vL/c)1Z(L,v)cos(vL/c)

cos(vL/c)1igZ(L,v)sin(vL/c)
,

~35!.

~5! else, if vk50 then

j Z0(vk ,na ,nb)5
8m l rr

pr 0
3 1ZL(vk ,na ,nb), ~36!.

~6! Update the table of pre-computed values:
j comp(na ,nb)5Z0(vk ,na ,nb).

For all of our simulations the terminal resistance
taken to be zero and the impedance is predicted so
from the structured tree. However, it is easy to mod
the algorithm to incorporate an additional terminal im
pedance beyond that provided by the tree itself.
Algorithms ~3! and ~4! only determine the frequency
dependent impedance, while the outflow boundary c
dition ~38! for the large vessels require a time-depend
impedance. However, the response functionz(0,t) and
hence the impedance that appears in the convolu
integral in ~38! can be found by inverse Fourier tran
form of the root impedanceZ(0,v). The convolution
spans one period, hence, knowledge of the solution a
timesteps during that period is required. Since Eqs.~6!
and ~13! are solved using the explicit two-step Lax
Wendroff method, the solution is not simultaneous
available at all times during the period. Because
assumed that propagation of the flow and pressure wa
is periodic this difficulty can be overcome using an
erative approach. At any timet values from the previous
period ~for t8P@ t:T#) are used together with the one
already available fort8P@0:t# ~see Fig. B3!. Iteration is
carried out over a number of periods until a stable so
tion is reached. Experiments suggest that a stable s
tion is reached after about four periods~see Fig. B5!.
Another possibility would be to investigate whether t
equations can be solved using a self-similar approa
This does not seem to be possible because of the vis
treatment of the momentum equation and the manne
which the tree is terminated when a fixed radius
reached. We have, however, been able to solve for
input impedance of an inviscid, infinite, self-similar tre
~for details see Olufsen!.20
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FIGURE B5. Aortic pressure 8 cm after the aortic valve. The
plot shows that p „x ,t … converges after about four periods.
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