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Abstract—BIlood flow in the large systemic arteries is modeled INTRODUCTION
using one-dimensional equations derived from the axisymmet-

ric Navier—Stokes equations for flow in compliant and tapering The aim of this work is to develop and use a one-

vessels. The arterial tree is truncated after the first few genera- yimeansional fluid-dynamical model predicting blood flow
tions of large arteries with the remaining small arteries and

arterioles providing outflow boundary conditions for the large @nd pressure in the systemic arteries at any position
arteries. By modeling the small arteries and arterioles as a along the vessels. Such a model can be used to study the

structured tree, a semi-analytical approach based on a linear-profile of the flow and pressure waves as they propagate
ized version of the governing equations can be used to derive along the arteries. The form of the waves change as a

an expression for the root impedance of the structured tree in . . )
the frequency domain. In the time domain, this provides the resullg zgf the arteries changing geometry and struc

proper outflow boundary condition. The structured tree is a tUre: . _ _ _
binary asymmetric tree in which the radii of the daughter ves- The systemic arteries are compliant vessels which

sels are scaled linearly With the radius of the parent vessel. taper along their length and become stiffer with smaller
Blood flow and pressure in the large vessels are computed as;gjii. They are organized in a bifurcating tree in which

functions of time and axial distance within each of the arteries. the cr tional ar f the v Is expands from
Comparison between the simulations and magnetic resonance € cross-sectional area of the vessels expands from ap-

measurements in the ascending aorta and nine peripheral locaProximately 5 cm at the aortic root to approximately
tions in one individual shows excellent agreement between the 400 cnt at the arteriole§. The expansion occurs because

two. © 2000 Biomedical Engineering Society. at each bifurcation the combined cross-sectional area of
[S0090-696400)00311-4 the daughter vessels is larger than that of the parent
Keywords—Arterial blood flow, Arterial modeling, Blood flow V;S‘Zel’ er\]/en thouQIh ,the Cr(I)Iss-Shectlor:laI area fth each of
modeling, Arterial outflow conditions, Biofluid dynamics, the daughter vessels Is sma grt an the area of t _e parent
Mathematical modeling. vessel. Furthermore, at the distal end of the arterial tree,
at the arteriolar level, there is a high resistance to the
10

Address correspondence to Mette S. Olufsen, Department of Math- flow.™ As a result, the flow and pressure waves are
ematics and Center for BioDynamics, Boston University, 111 cum- T€flected, and the reflected waves propagate backward
mington St., Boston, MA 02215. Electronic mail: mette@bu.edu through the arterial tree. For example, the reflected wave
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is diminished in some people suffering from diabetes or )
vascular diseases such as atheroscle?d§i¥ It has also Dvn G 5

been observed that people with stiffer arteries have a less 4 6
pronounced reflected wave but increased diastolic and 3 5.dD

systolic pressures*19The profiles of the flow and pres- 2,CXB 8

sure waves vary significantly even among healthy LAX 7\/ E
peoplel® Hence, being able to construct a model based Heart® 9

on measured geometry and a single noninvasive flow .. F
measurement in the ascending aorta will enable us to B :10 1 & J
study the wave forms for any given subject. Computed e, VK TRy
pressure and flow profiles could be used as part of a '~.. _‘ 1415 W &)
diagnostic tool. For example, for a given subject, mea- i 17]16%% €5
sured pathologic flow profiles could be compared with 9.G 18, .
computed healthy flow profiles. Studies of how the ’ X

model parameters must change to simulate the measured H A 20

pathologic flow profiles might lead to a better under-
standing of the pathologic condition. In addition, com-
putation of flows and pressure profiles could be used in I¥\22 22
connection with simulators, e.g., in surgical or anesthesia
simulators.

In this paper we use the one-dimensional fluid-dyna- 24123 23] \24
mics model developed earlférfor a case study compar-
ing simulated flow and pressure waves with flows ob- < o1,
tained using magnetic resonance technigues. The geom- b
etry (lengths, inlet and outlet radiiof the vessels is
obtained using measured data from one subject and other
vessel propertiesmainly elasticity of the walls and the <L Jile.
peripheral resistancesare based on the previous motdel Seele? S’
but with parameters adjusted to compare with the mea- ) i ,
sured data. I addiion, the equation specifying how pres- HCUE 1 Tre systemic areria ee The large areres e
sures change from a parent vessel into its daughters hasire determined from magnetic resonance measurements.
been modified. Finally, in our previous Wo?'k,the fluid The small arteries are modeled as structured trees attached
dynamical model was stated but not derived: so we pro- at the terminals of the large vessels. The geometry of the

: = . structured trees does not mimic the actual geometry of the
vide a complete derivation of the equations and state thevessels, but is based on general statistical relationships,

algorithms used to solve them. which are estimated from literature data. The numbers of the

“The modef! consists of two parts: The large arteries, eeope (7 0 1 YeTous seament of e oe aiores

in which blood flow and pressure are predicted at any The letters show the ten locations where the flows were

point along the vessels, and the small arteries, in which measured. The data for thesg are also specified in T_able 1. In

a relation between flow and pressure yields outow SF75 0K too mary arfacs cue fo erry regon fow,

boundary conditions for the large arteriésee Fig. L bifurcations.

Blood flow and pressure in the systemic arterflesge

and small vesselsare determined using the incompress-

ible axisymmetric Navier—Stokes equations for a New- the model we made the following exceptions: The two

tonian fluid. The one-dimensional model is obtained by coronary arteries, the intercostal arteries, the arteries

integrating these equations over the cross-sectional areébranching from the celiac axis, and various branches

of the vessels. from the subclavian, brachial, and carotid vessels are left
The tree representing the large arteries originates atout. Arteries present on both sides of the body are mod-

the heart and includes one or two generations from the eled identically. These include the renal, carotid, subcla-

aorta, iliac, and femoral arteries. The geometry of the vian, brachial, iliac, and the femoral arteries. The coro-

large vesseldlengths and diametersnimics the actual nary arteries are not included because the inflow into the

geometry of the arteri€s®>?8These data are obtained by aorta from the aortic valve is measured in the ascending

magnetic resonance techniques. Since we are interestecorta past the coronary bifurcation. However, the coro-

in predicting flow and pressure waves for a given sub- nary arteries take approximately 4%—-5% of the cardiac

ject, lengths and diameters for all vessels must be faith- output and hence they should be included if the inflow

ful to the human arterial tree. However, in order to limit into aorta is measured immediately after the aortic valve.
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The intercostal arteries take less than 1% of the cardiac du, 1 d(ru,)
output and, hence, their neglect does not alter the com- &_x+ T o
puted flows significantly. The remaining arteries not in-
cluded in the model are beyond the initial branching
from the aorta, e.g., the branches from the celiac axis. .
We have no measurements in these arteries and includingglveS

them would increase the computational time signifi-

cantly. Finally, left and right arteries are modeled as 0:2W1R<07Ux Eé’(rur)>

)

Integrating(1) over the cross-sectional area of the vessel

identical since we only measured the geometry in one o\ dx r oar
side. 5 (R R

The small arteries are modeled as pmary asymmetric =2w—f Urdr — 27 —[ru Jr+ 27[ruJr. (2)
structured trees attached at the terminals of the large dXJo Jx

arteries(see Fig. 2 Each of the vessels within the struc-
tured trees is modeled as a straight segment of compliantSince the vessel is longitudinally tetherée., undergoes
vessef??! Unlike the large arteries, the structured trees radial motion only and the fluid sticks to the vessel wall
do not mimic the actual geometry of the vessels, but are (due to the no-slip condition
based on general statistical relationships which are esti-
mated from literature datat* JR
[ude=0 and [u/]r="r 3
LARGE ARTERIES

Predicting blood flow and pressure in compliant ves- Moreover, since the cross-sectional area 7R?,
sels requires three equations. Two equations ensure con-
servation of volume and momentum, and an equation of IR IA
state relates the fluid influence on the vessel wall to its Zw[r”r]RZZWRE: It
compliant properties.

.A typi(;al vessel is modeled as an.axisymmetric COM- | ot ys define
pliant cylinder. The velocity of the fluid enclosed within
the cylinder is denoted byu=[u.(r,x,t),u,(r,x,t)], R
wherer is the radial coordinatex is the position along q:zwf urdr (5)
the vesself is time, u, is the radial velocity, and, is 0
the axial velocity. The blood vessel wall is assumed to
be impermeable. Hence, the no-slip condition is satisfied as the flow(volume/time through the vessel. Then, the
if the velocity of fluid at the wall equals the velocity of one-dimensional continuity equation can be obtained us-
the wall. The density and the viscosityu are taken to ing (3)—(5) in (2):
be constant. Lep(x,t) represent the pressure of the fluid
and let py (which is constant represent the diastolic aq  IA
pressure. We assume that the pressure does not vary 0_x+ ot
much over the cross-sectional area of the vesselpi.is.,
approximately independent of Let R(x,t) be the radius
of the vessel and leA(x,t)=wR?(x,t) be the corre-
sponding cross-sectional area. The vessel is assumed t
taper exponentially, i.e., the equilibrium radiusrigx)
=rexp(logf,/r)x/L) when p(x,t)=p,. Here,r, andr, Uy U due lop v d

(4)

0. (6)

Momentum Equatiorfor axisymmetric flow with no
3wir| the x-momentum equation reads

AUy
ar

denote the inlet(top) and outlet(bottom radii of the at  Ux IX e ar * pax roor
vessel, andL denotes the vessel length. Finally, it is

assumed that the wall of the vessel undergoes radialThe first three terms represent the axial acceleration of
motions only, i.e., that the vessel wall is longitudinally the fluid, and the remaining terms represent the sum of

)- @)

tethered. all forces acting on the fluid. In this model the forces are
composed of pressure and viscous contributions (
Fluid Dynamic Equations for the Large Arteries = ulp is the kinematic viscosily Generally, the previ-

ous equation contains an additional viscous term acting
Continuity EquationFor axisymmetric flow, the continu-  in the longitudinal direction £5%u,/Jx?). In this deriva-
ity equation requires that the divergence of the velocity tion we have neglected the longitudinal viscous term
field vanish, yielding since it is small compared to the radial tefthe right-
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hand side of(7)]. The longitudinal viscous term is small

QLUFSEN et al.

HereUX(x,t) is the axial velocity outside of the boundary

because blood vessels are very long in comparison tojayer. According to Lighthift’ the boundary layer thick-

their radii.

As in the case of the continuity equation a one-
dimensional model is obtained by integrating over the
cross-sectional area, keeping in mind tipais assumed
constant over that area

5 fRaux dr+2 fR aux+ AUy g +A(9p
woatrr WOUX&X ur&rrrpéx
AUy
=2mwy|r— (8
ar R

Using Egs.(3) and(5) the first term in(8) can be written

as
aJ R
E(wao uxrdr)—

Through integration by parts, the continuity EG) and
the relationships in3) can be used to simplify the sec-
ond term of(8):

R
ZWJ(
0

R
=277J(

0

2 JRand ap fR2d
—Woa—xr r_ﬁ_X ﬂ-ouxrr.

Combining the earlier terms with the remaining terms in
(8) gives

JR

2 _&q
ot mlruylgr= ot

M U g
u,— +u, — | rdr
X 9x "or

AUy
ruX_ﬁX — Uy

a(ru,)
ar )dr

J Jd
a.c
gt oIx

AU,
r_

ar |’ ©)

R
277J uZrdr
R

0

A dp
+——=27v
p OX

ness é (for the large arteriescan be estimated from
(vl w)¥?=(vT/(27))Y?~0.1 cm, where the kinematic
viscosity »=0.046 cni/s, w is the angular frequency,
and the period of the cardiac cycle=1.1 s. The inte-
grals in(9) can be expressed as power seriessin

R — 5
q=2wJ uxrdr=Aux(1— —+(9(52))
0 R
and

R
277[ uzrdr :AU)Z((

45
1———+O(52)).
0

3R

Combining these two terms, gives

1 29 O( 82
+§§+ ( )

R, q?
277f0 uerr=K

The viscous drag force can be evaluated using the ve-
locity profile in (10):

Uy

ZWVRUX_ 27vR
"o =

_ q
5 5 A

27y (1+0(9)).

1y

Keeping the leading terms in each component and insert-
ing them into(9) yields the one-dimensional equation

2mvR q

aq 9
A

2
9%\ Adp
at+5(x+ X

pax 8

12

In the above derivation we assumed that the viscous
stress(by the fluid on the wallis perfectly in phase with
the mean velocity. Young and Tsai among oth&f3
defined the viscous stress as a combination of two terms,
one accounting for the part in phase with the mean ve-
locity and a second term which is proportional to the

So far we have not made any assumptions about thetime derivative of the velocity. Their derivation is based

form of the velocity profile. For pulsatile laminar flow in
slightly tapered vessels, the velocity profile is rather flat
except for a thin boundary layer of widf<R, in which
the transition to zero velocity at the wall is madkhe
no-slip condition.’®?® Based on these considerations we
suggest the following model for the velocity profile

Uy for r<SR—6
Uy=1 — (10
u(R—r)/s for R—é<r<R.

on oscillatory flow in a rigid vessel where the unsteady
term is included. In a rigid vessel, can be found in
terms of Bessel functions with complex arguments de-
pending on the frequency of the oscillatory flow. The
result can be expanded in the limit of either small or
large frequencies. In the low frequency limit Poiseuille
flow is recovered and at high frequencies the equivalent
to (11) is obtained. The solution by Young and TSk
equivalent to what we have obtained for the small arter-
ies where the viscous effects are more significage
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section on Small Arterigs For the large arteries the relationship is derived from the linear theory of elastic-
viscous effects are small, and hence, we have not in-ity. Using a purely elastic model is reasonable because
cluded the unsteady term in the earlier equation. How- viscoelastic effects are small within the physiological
ever, such a term can easily be included by changing theranges of pressuré.Assume that the vessels are circu-
coefficient of 9g/dt in the momentum Eq(12). lar, that the walls are thinh{ry<1, h being the wall
The continuity(6) and momentun{l2) equations can-  thicknes$, that the loading and deformation are axisym-
not be solved analytically so a numerical method is metric, and that the vessels are tethered in the longitu-
called for. In this work, the equations are solved using dinal direction. Hence, the external forces can be reduced
the two-step Lax—Wendroff method, which requires the to stresses acting in the circumferential directiand
equations to be written in conservation form. A conser- from what is known as Laplace’s law the circumferential
vation form can be obtained by introducing the quantity tensile stress can be found in the form
B defined below. Note that the cross-sectional akeia
regarded as a function of pressure r(p—pPo) E (r—ro)

TTTh T (Imag,)  To

1 (pxt)
B(fo(X),p(X,t)):;LO Alro(x),p"Jdp’= where ¢—rg)/r, is the corresponding circumferential
strain, E is Young’s modulus in the circumferential di-

B Adp B drg rection, o,=0,=0.5 are the Poisson ratios in the cir-

2y =9 cumferential and longitudinal directions. Solving for
The last term can be evaluated explicitly and may, there- 4 Eh Ao
fore, be added to both sides of the momentum @EQ). p(X,t)—po=§ r_( 1- X) (14
0

As a result the conservation form is obtained

5 where Ag= 713 is the cross-sectional area whpr= po.
27vqR 9B dr ; ;

q_+ ) _ L2270 (13) The theory that we have just outlined has the property
A oA arg dx’ that dp/dA decreases with increasimm(or A), contrary

to the behavior of real blood vessels, in whighis not
Equations (6) and (13) constitute our basic one- constant but increases as the arterial wall is stretched.
dimensional model for propagation of blood flow and This will be addressed in future work. Here, however,
pressure. However, there are two equations for threeWwe assume thek is constant(strain independeptat any

dependent variableg, g, andA. Therefore, a third rela-  given location in the arterial tree. We do, however, allow
tionship (a state equationis needed. the Young’s modulusE to vary from one location to

another. This reflects changes in the elastin content of
State EquationThe aorta and the large arteries contain the vessel wall at different levels of the arterial tree.
smooth muscle, elastin, and collagen. The presence ofSpecifically, small arteries are stiffer, and we model this
elastin makes the large arteries capable of considerableby making the Young’s modulug be a function of the
expansion and recoidistensibility. The distensibility of ~ diastolic vessel radius, according to the following for-
the vessels enables them to store pressure energy as thefhula based on compliance estimafes-**
walls are stretchedduring systolg¢ and release it as ki-
netic energy of flow when the walls are relax@ilring
diastolg. The storage and release of energy helps to
propel the blood toward the tissues during the diastolic
phase of the cardiac cycle and promotes a more evenyere k,=2.00< 10’ g/(s?cm), k,=—22.53 cm?, and
flow into the arterioles. The arterioles have a smaller . —g g5x 105 g/(s’cm) are constanfs.
amount of elastin fibers but more smooth muscle fibers,
which enables them to regulate the flow by constriction Boundary Conditions for the Large Arteries
or dilation of their lumen, e.g., during exercise. How- The model derived in the previous section predicts
ever, we assume that the subjects studied are at rest andplood flow and pressure for a single vessel segment. In
hence, only the mechanisms of stretch and recoil via the order to extend the model to the arterial tree it is neces-
elastin fibers are considered. The distensibility of the sary to establish relevant boundary conditions.
large arteries is not purely elastic but the vessels exhibit The system of equations is hyperbolic with a positive
a viscoelastic behavidrHowever, in order to keep the wave-propagation velocity much larger than the velocity
model simple, viscoelasticity is disregarded and a simple of the blood. Consequently, three types of boundary con-

J Jd
a.,’
gt oIx

Eh
r_:kl equ2r0)+k3 (15)
0
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In a one-dimensional model the loss coefficients cannot
be estimated analytically, but they can be found either by
three-dimensional computations or by physical experi-
ments. In addition, the Bernoulli equation is derived for
steady flow in a rigid pipe and hence it does not strictly
apply for pulsatile flow in elastic vessels. Previous
studied*"?8show that a good approximation which does
account for some loss of energy is assuming pressure
continuity, i.e., that

Ppa= Pd, = Pd,- (18)
FIGURE 2. The structured tree (adapted from Olufsen ) (see
Ref. 21). At each bifurcation the radii of the daughter vessels . . . . .
are scaled by factors « and B. Because of the structure in In the simulations presented in this paper E#i8) is
theds?alin% Somehof the Slébtrees Sﬁal?dwithlth% same factO(rj used at all bifurcations except for the bifurcation from
an or these, the Impedance shou only be compute H H : H H H
once. For example, the impedance of the subtree  (scaled by ascending aorta} into the aortllcl arch. At this bifurcation
ap) branching off to the left of the branch scaled by B has we used(17) with _lOSS coeff|C|e_ntsK5=0.75 andK,
already been computed in the subtree branching off to the =0; the numbers in the subscripts refer to the vessels
right of the branch scaled by  a. shown in Fig. 1. These coefficients are estimated based

on studies of flow around a bend of a rigid pipend
adjusted to compare with the measured flows. This bi-
furcation is special because the velocity is maximal be-
to the arterial tredi.e., at the aortic valve (b) an equa- fore this first major bifurcation which in addition makes

tion at the outflow from each of the terminal vessels of & 90° turn. This gives rise to more pronounced vortices
the arterial tree(where the small arteries are attached and, hence, a larger loss of energy.

through structured trees, see Figs. 1 andad(c) three - )

equations at each of the bifurcations, since three vesselsQutlow Boundary Conditionghe small arteries com-
(a parent and two daughter vessefseet at each such prise a collectlon_ of binary and asymmetrically s_truc-
junction. Each of these boundary conditions should be fUred trees(see Fig. 2 Each such tree has a variable

specified by an equation for either flow, pressure, or a number of generations before the arteriolar level is
combination of both. reached, since that level is defined by a particular vessel

radius, and it takes a variable number of generations in
an asymmetrically branching tree to reach a specified
tree the flow is specified using a magnetic resonance radius. In the small arteries that connect the large arteries

measurement of the flow in the ascending a¢ste Fig. to the arterioles, viscous effects are more important than
3). in the large arteries, and inertial effects are correspond-

ingly less important. Accordingly, we drop the nonlinear
terms, but model the viscous effects in greater detail.
Another simplification is that we treat each vessel as

ditions must be establishe@®) An equation at the inlet

Inflow Boundary ConditionAt the inlet to the arterial

Bifurcation ConditionsAssuming that all bifurcations
occur at a point and that there is no leakage at the

bifurcations, the outflow from any parent vessgk) straight. Together, these assumptions allow for an
must be balanced by the inflow into the daughter vessels/MPedance-based analysis, similar to what would be used
(d, andd,): for a tree of electrical cables. In particular, we are able to

compute the root impedance of each tree of small arter-
ies by a recursive numerical procedure. These root im-
Qpa=a, + Ad,- (16 pedances then provide the outflow boundary conditions

for the large arteries. This is the subject of the next

Vortices can be created at the inlet of the daughter ves-section.

sels resulting in some loss of energy. In general the loss

of energy at bifurcations is mindf. Such a loss is cus-

tomarily expressed in terms of a loss coeffici&nivhich SMALL ARTERIES

appears on the right hand side of the Bernoulli equation
PP g q In order to construct the structured trees located at the

terminals of the large arteriesee Figs. 1 and)2 the
_ P —2 —o2 P — o characteristics of the small vessels must be modeled.
Pa, = Ppa™ 2((ux)pa (Ux)g) 2 (Uy)pa,  fOr i1=1,2. Relevant parameters are radius, a bifurcation relation-
(17 ship, asymmetry and area ratios, length, and compliance.
p, asy y g p
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Asc Aorta (A)

FIGURE 3. The inflow as a function of time. The inflow is a
periodic repetition of data measured in the ascending aorta
(at A in Fig. 1) during one period lasting 1.1 s.

The structured tree is constructed such that it is geo-

metrically self-similar. All parameters can be specified in
terms of the vessel radius. A power law determines how
the radius changes across bifurcations

(ro)5a=(ro)i, + (ro)§, - (19

As in (16), the subscript pa refers to the parent vessel,
and the subscriptd; and d, refer to the two daughter
vessels. The power-law has been derived by Murray,
Zamir, and Uylings among othéfs®® based on principle
of minimum work in the arterial system. The relationship
is valid for a range of flows¢=3.0 is optimal for lami-
nar flow andé=2.33 for turbulent flow. In arterial blood
flow a good choic® for the exponent is=2.76.
Combined with equations determining the area and

asymmetry ratios, the power law can be used to deter-

mine linear scaling ratios between the radii of the daugh-
ter vessels and the radius of the parent vessel

(ro)d1= a(T o) pas

(ro)dzzﬁ(ro)pa
and

(ro)kn=a*B" ¥ rg. (20

In these equationga and 8 are constants that character-
ize the asymmetry of the trefsee Fig. 2 Their values
will be determined later. The generation number is de-
noted byn, with n=0 corresponding to the vessel that
forms the root of the tree. The constary, with no
further subscript, refers to the radius of the root vessel.
There may be as many a$ 2essels in thenth genera-

1287

factor @, andn—k choices of the scaling fact@, where
o<k=n.

The structured tree continues to branch until the ra-
dius of any vessel is smaller than some given minimum
value (). The arterioles are muscular vessels which
are able to dilate and contract severalfold regulating the
supply of blood to the tissue. Assume that the subject
studied is at rest. Then, the minimum radius can be
selected such that the resistances of the structured trees
correspond to the resistances of the vascular beds.

The asymmetry of the vessels can be characterized
from the area ¢) and asymmetry ) ratios* which can
be defined by

~(ro)g, +(rog,

n=
(ro)Sa

(ro)d2> 2

and y= ( (fo)g,

The parameterg, », andy are not independent but are
related by

1+y

- (21

7

Consequently, if the area-ratip and the exponeng are
known, the asymmetry-ratiou can be calculated. Using
an area ratio ofp=1.16 and the powek=2.76, the
asymmetry-ratioy=0.41. The area-ratio; and the ex-
ponent¢ have been estimated based on studies by Papa-
georgiouet al?? and Uylings® The scaling parameters
and B can be found from¢ and y:

a=(1+"?)"%=09 andB=a\y=06. (22

The length of each vessel can be related to the radius
using a constant length-to-radius ratio. Based on studies
by Iberalt! we have chosen the length-to-radius ratio
I,=L/ro=50. Iberall estimated this length-to-radius ratio
based on branches from the small arteries such as the
renals, the femoral arteries, the mesenteric arteries, and
the cerebral artery.

In order to compute the compliance of the small ar-
teries, information on how the wall-thickneds and
Young's moduluskE change or depend on other param-
eters throughout the tree is needed. Such a relationship
has been estimated for the large arteries and the small
arteries are essentially composed of the same types of
tissue, hence(15) has been taken to apply for the small
arteries and arterioles.

tion; however, because some branches may already have As in the case of the large arteries, equations for

terminated, this number will often be smaller. In addi-
tion, there are at most+1 different size branches in
generationn, corresponding tk choices of the scaling

blood flow and pressure in the small arteries can be
derived from the axisymmetric Navier—Stokes equations.
However, while inertia effects are more important in the
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large systemic arteries, viscous effects become more im-
portant in the small arteriésHence, we neglect the
nonlinear inertial terms. This approach is based on the
work originally discussed by Womersley, but later re-
fined by Pedley and Atabek and Lé®*?*32Assuming
that the flow and pressure are periodic, the momentum
Eq. (7) can be written as a Bessel equation, which can be
solved analytically. This analytical solution provides a
frequency-dependent relationship between flow and pres-
sure in the form of an impedance condition.

Fluid Dynamic Equations for the Small Arteries

Linearizing the momentum Ed7) yields

%)

Assuming that all variables are periodic they can be

u, lop wv o
gt pox ror

AUy

ar (23

written in  the form Ug(r,x,t)=U,(r,x)e'“,, p
=P(x)e'“!. Hence,(23) can be written as
Uy LR v U, o
Iwxpax_rarrar ' (24

Since the small vessels do not taper, the solutiof®
is given by
=

where W=i%w? (W?=r3w/v is the Womersley numbgr
andJy(x) andJ;(x) are the zeroth and first order Bessel
functions. Similar to the large arteries the flow-raje
=Qé€*“! is given by

1 9P

B Jo(rwo/ro)
Tiwp ax

Jo(wo) )" @9

X

o i _AO P
Q=27Tf UyrdreioQ=———(1-F;), (26
0 p X

where

2J,(wp)
= (27
WoJo(Wo)
The viscous stress, = 7e'“! by the wall on the fluid can

be determined from the solution to the linearized
Navier—Stokes Eq(23):

kW)
Ly Aoro2(1-Fy

X

T=p—r r (28

Expanding(28) for small values of vy yields
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M wg

- o 4

__Aoro 4+ & +O(WO)}Q®
du ré d )

Trx —m[l-i-ﬁa-i-(/)(w ) g.

(29

The first term 0of(29) is similar to the viscous stre$d1)
obtained from the simple boundary-layer consideration in
(10) except that the above term corresponds to a para-
bolic velocity profile. The second term corresponds to
the unsteady term obtained by Young and FdaHow-
ever, they modified the coefficients based on empirical
data.

The one-dimensional continuity equation for the small
arteries is the same as the one for the large arteries.
Using the state Eq.14) the continuity(6) can be written
as

p g

+ 0 _A
ot oox ’

=9

where C is the compliance. The compliance can be ap-
proximated by linearizing the state E{.4):

1
since Eh=pr,,.

Because the inflow into the arterial tree is periodic the
flow and pressure will be periodic, and hence they can
be expressed using complex periodic Fourier series of
the form

A 3Agrg
~dp 2Eh

3prg
~ 4Eh

0

¢(X.t)=k2

=—

D (X, wy)e' K,

1 (T2 )
@(x,wk)=? _T/2¢>(x,t)e"wktdt,

wherew,=27k/T. The Fourier series should be used for
d=p(x,1),q(x,t),z(x,t) or in the frequency domaid
=P(X,0),Q(X,w),Z(X,w). Using the Fourier series and
the compliance approximation if30) the continuity
equation can be transformed as

Jd
iwCP+—Q
X

0. (31

The momentum(26) and continuity (31) equations
determine the flow resulting from an oscillatory pressure
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gradient in a straight vessel where the amplitude and ig lsinwl/c)+Z(L,w)cogwl/c)
phase depend on the compliance of the wall and the Z(0.0)= oS wLIC) T19Z(L.0)SMwlic) " (39

viscosity of the blood. The equations are periodic with
period T and apply to any vessel of length Differen-
tiating (31) with respect tox and inserting the result in
(26) gives a reduced wave equation of the form

w2Q+ _, o TP, (32)
— —=0 or —P+—=
c? ax? c? ax?
with the wave-propagation velocity
Ag(1—F
o=/ 7F) (33
pC

Solving (31) and (32) yields

Q(X,w)=acoq wx/c)+bsin(wx/c),

N R
P(X,w)=i CAO(l—FJ)( asin(wx/c)

+bcoqgwx/c)),

wherea andb are arbitrary constants of integration.

Using the terminology from electrical cables, wikh
playing the role of voltage an®) playing the role of
current, the impedancg(x,w) can be related to pressure
and flow by

P(x,w) ig~*(bcogwx/c)—asin(wx/c))
Q(x,w)  acogwx/c)+bsin(wx/c)

whereg=cC=CAy(1—F;)/p. At x=L

_ig~}(bcogwl/c)—asin(wlL/c))

Z(X,w)=

Z(Lw)= acogwl/c)+bsin(wL/c)
and atx=0:
2(0w)= -2, (34)
ga
where

b B sinfwL/c)—igZ(L,w)codwl/c)
a coqwl/c)+igZ(L,w)sinwl/c)"

Insertingb/a into (34) gives

For any vessel, the input impedance for zero frequency,
or in the electrical terminology the direct curre(@2C)
impedance, can be found as

8ul
2(0,0= lim Z(0,0) = ——"

w—0 ’7Tr0

+Z(L,0), (36)

where | ,=L/rq is the length-to-radius ratio. Equation
(36) suggests that in generédior any networl the root
impedance will be proportional togs. Since the struc-
tured tree is terminated when the radius of any branch is
smaller than some given minimum valug,;,, the con-
stant of proportionality cannot be derived analytically.

Boundary Conditions for the Small Arteries

Analogous to the large arteries, Eq26) and (31)
predict blood flow and pressure for a single vessel seg-
ment. In order to compute the impedance at the root of
the structured tree it is necessary to establish relevant
boundary conditions. In this case, the relevant boundary
conditions are outflow boundary conditions and bifurca-
tion conditions.

Bifurcation ConditionsThe bifurcation conditions are
similar to those established for the large arteries. As in
the case of the large arteries we assume that there is no
leakage at the bifurcation so that the flow is conserved.
Moreover, the pressure is continuous since any pressure
difference across a junction, which would arise due to
the nonlinear terms, is being neglected. Therefore, the
bifurcation is analogous to a transmission-line network
where the admittancesy&1/Z) add

1 1 1

_— . 3
Z Zo ' Za (37

Outflow Boundary Condition$Since viscosity is taken
into account in the fluid dynamics of the structured tree,
it is not necessary to include lumped resistance elements
at the leaves of the structured tree, i.e., the terminal
resistance of the structured trees can be set to zero. The
various parts of the body serve different needs and hence
show a variation in the peripheral resistance. Having a
zero terminal resistance for the structured trees thus re-
quires that the minimum radiir(,,) at the terminals are
chosen individually for each of the structured trees.

While r.,, may vary among the different structured
trees, it is kept constant within each of them.
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THE ROOT IMPEDANCE OF THE SMALL large arteriegsee Algorithms for the Small Arteries in
ARTERIES AND COUPLING OF SMALL AND Appendix B.
LARGE ARTERIES In order to evaluate the above convolution integral

) ) (38) for all times during a period, the impedanZ¢w)

As described earlier, all parameters for the structured should be determined for all discrete angular frequencies
tree are determined as functions of the vessel radius.,, —27k/T, where k=—N/2,... N/2 and N is the
Hence,g and the lengthL can be determined as func-  nymper of timesteps per period. Assuming thét,t) is
tions of the vessel radius. Furthermore, the geometric req, z must be self-adjoint
self-similarity makes it possible to compute the root im-
pedanceZ(0,0) for each of the structured trees shown in
Fig. 1. Since the terminal impedance is knoyamd con-
stan} within each of the structured trees, the impedance
at the beginning of all the terminal vessels can be found HeNce: only Z(0,w) for k=0.1,... N/2 need to be
using (35). Jumping up one generation, the impedance at d€términed.
the end of all parent vessels can be found usiag.
Again (35) can be used to find the impedance at the
beginning of the vessels at this level. Continuing in this
manner the impedance can be found at the root of the
structured tregfor details see Algorithms for the Small
Arteries in Appendix B. Computing the root impedance
using the method described earlier would be very expen-
sive if the structure of the small arteries were not ac- ,qteristics of the arterial pulse both qualitatively and
counted for. As shown in Fig. 2, some subtrees scale g aniitatively by comparing our model with data mea-
with the same factors as subtrees in which the impedanceg ;o using magnetic resonance techniques.
has already been computed. Assuming that all terminal

; \ : , All simulations in this paper were based on the same
branches are termmated with the same peripheral resis-qg; of parameters. Most lengths and diameters were
tance, subtrees with

: identical paths will have the same pased on magnetic resonance measurements. At locations
root impedance, and need not be re-evaluated. This strucy,here measured data were not available, lengths and
ture reduces the computation from orde¢2") to O(n?) diameters were estimated from combining literature data
wheren is the maximum number of generations of the | ith measured and computed flows. All geometric pa-
structured tree. _ rameters used to specify the large arteries are shown in
As stated earlier, a complete binary tree has 2 taphje 1 The parameters representifiyr, were chosen
branches at theath generatlo_rj. In our case the tree is using (15), while density p=1.055 g/cri) and viscosity
structurgd such Fhat the radii of the vessels at r_ultie (x=0.049 glcm ) were kept constant. The parameters
generation are given b{20). For the whole tree witm for the structured trees followed the choices discussed in
generations there would be the section on Small Arteries. The terminal resistances
0 for the small arteries were all set to zero. In order to take
E E 1o (n+1)(n+2) —om? the variation in peripheral resistance into account, four
=0 &5 - T (n%) different minimum radiir,,,=0.01,0.02,0.03 cm were
chosen for the structured treésee Table 1L
The total cross-sectional area of the systemic arteries
increases from 5 cfnat the root of the aorta to 400 ém
.at the arterioles. The maximursystolig pressure of the
large arteries increases away from the heart, towards the
periphery, while the mean pressure decredseke in-
crease of systolic pressure is mainly due to tapering and
branching of the large arteries and the peripheral resis-
tance in the arterioles. As a result of these features the
flow and pressure waves are reflected. In the large arter-
. ies, the reflected wave is superimposed on the pressure
p(x’t):f q(x,7)z(x,t—r)dr. (38) wave, increasing the systolic pressure. At the same time
=T the large increase in cross-sectional area causes a de-
crease in mean pressure. Within each of the vessels the
This new outflow boundary condition for the large arter- same effect can be seen on the flow wave, however, at
ies should be evaluated for each of the terminals of the the bifurcations the flow decreases. These effects were

Z(0,w_)=Z(0,wy).

RESULTS

Our aim was to show that the structured tree model
provides a feasible outflow boundary condition for deter-
mining blood flow and pressure in the large arteries. We
verified that our model can reproduce the essential char-

different impedances which must be calculated. For the
structured treé¢see Fig. 2 some branches terminate early
and hence the number of impedances that must be ca
culated is smaller.

By inverse Fourier transform the results fa(x,)
can then be transformed to obtai(x,t). Using the con-
volution theorem it is possible to arrive at an analytic
relationship betweep and qg:
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TABLE 1. Geometrical data, i.e., length, inlet  (top) and outlet A: Aorta
(bottom ) radii, and the minimum radius for the structured
trees. The numbering in the left column refers to the numbers
shown in Fig. 1. Data labeled m are measured on the magnetic
resonance images and data labeled e are estimated. All the
measured radii and lengths have an accuracy of + 1 mm. In
the computations, the values listed in the table are used (with
two decimal points ); these values are selected so as to

approximately match the measured radius accounting for the ?
exponential tapering defined in Large Arteries. E
L " a
min
No. Artery (cm) re(cm) rp (cm) (cm)
805 » 40
1 Ascending aorta 70 125 114 - 25 5 e N
5 Aortic arch 1.8 114 111 - 425 '
7 Aortic arch 10 111 109 - tis] 25 45 0 xlom]

188 1.09 0.85
20 085 083 -
20 083 080 - B: Subclavian and Brachial Arteries
10 080 079
6.0 079 0.73
30 073 0.70
6.5 045 043
13.0 043 040 -
440 040 030 001
45 020 020 0.01 g'
11.0 020 020 0.01 €
35 070 070 - E
430 044 028 0.01 a
170 029 028 002
190 029 028 0.3
30 033 030 0.02
50 033 033 0.02
30 028 025 002 tis]
40 020 018 001

9 Thoracic aorta
11 Abdominal aorta
13 Abdominal aorta
15 Abdominal aorta
17 Abdominal aorta
19 Abdominal aorta
20 External iliac
21 Femoral
24 Femoral
22 Internal iliac
23 Deep femoral

2 Anonyma

3,8 Subcl. and brach.

4 R. com. carotid

6 L.com. carotid
10 Celiac axis
12  Sup. mesenteric

14,16 Renal
18 Inf. mesenteric

40
30

. f 20
4.25 45 0 0 x [cm]

®®®®®d®d®do®3 3333333333

FIGURE 4. The graphs show pressure (mmHg) as a function
of space x and time t. The top graph shows the pressure
along the aorta and the bottom graph shows the pressure of
the subclavian and brachial arteries. The reason why the
aortic pressure has a discrete jump after 7 cm is the loss of
energy between the ascending aorta, anonyma, and the aor-
also present in our simulatiorisee Figs. 4—6 Further- tic arc (vessels 1, 2, and 5 in Fig. 1 ). The pressure in the

more, the velocity of the reflected wave is slower than subclavian and brachial arteries initially increases and then
. . decreases in order to accommodate the boundary condition

the velocity of the main wave. Consequently, the re- arising from the structured tree.

flected wave separates from the incoming wave and be-

comes more prominent at peripheral locations than at

proximal location$'® (see Fig. 4 Finally, the steepness CONCLUSION

of the incoming pressure and flow profiles increases to-

wards the periphery. This is due to changes in the wave-

propagation which, because of an increased Young's

The purpose of this study was to derive the equations
and boundary conditions needed for predicting blood
. . flow and pressure in the systemic arteries and to use
mo_?klljlu‘?l’ 'S Igr?er for the small \(/jeséi?(see Fig. ? these in a case study in which the geometry was based

€ Tlow data were measured using magnetic reso- o, anaiomical data and the other model parameters were

nance techniques in a 32 year old male weighing 65 kg 5564 on physical laws but adjusted to compare with the
and being 178 cm tall. His average heart rate at rest wasaasured flow profiles. This was achieved by using a

51 beats per minute and his systolic and diastolic blood 5pe_dimensional fluid-dynamics model, including the
pressures were 120/80 mmkigeasured with a cuff for large and small arteries. The geometry of the large ar-
further details see Appendix A. These pressure measure+eries was modeled combining measured data for the
ments corresponded well to the pressures computed aiessel length, inlettop) and outlet(bottom radii with an
the left subclavian arterysee Fig. & empirical law modeling the exponential taper of the ves-
The flows shown in Fig. 7 were measured at the sels. The geometry of the small vessels was based on
locations identified in Fig. 1. The corresponding pres- literature data and adjusted such that the peripheral re-
sures, computed using our model are shown in Fig. 8. sistance matched the measured flows. For large and
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Cross sections along Aorta excellent quantitative agreement with measured data. For
? ! ? ' : a correct quantitative comparison, measurements and
computations were carried out in vessels where the ge-
ometry and inflow were matched. The reason for this
was that the pressure and flow profiles are highly depen-
dent on these factors and vary significantly even among
healthy young peopl¥
The advantage of modeling the small arteries by ap-
plying structured trees at all terminals of the large arter-
_ : 5 : : ies is that it gives a physiological boundary condition
sol— ; H - i which is able to include wave-propagation effects. Fur-
34 36 38 4 42 44
t[s] thermore, the structured tree model has only two param-
o . - o _ our | eters that need to be estimated, the compliance of the
R g, arh shous e ot ressure st o & vessels and the radii at which the structured trees are
to see that the steepness of the wave front is increased at terminated. Because we did not apply any impedance at
more peripheral locations. the terminals of the structured tree, the peripheral imped-
ance for the large arteries was obtained entirely from the
solution to the linearized equations in the binary asym-
small vessels the flow and pressure were determinedmetrically structured tre#:
using the one-dimensional theory derived from the  As mentioned in Small Arteries, the diameter of the
Navier—Stokes equations. For the large arteries, flow andsmall arteries varies considerably and so does the periph-
pressure were determined at all points along the vesselseral resistance of these very small vessels which have a
but for the small arteriesthe terminals of the large strong muscular wall. This is consistent with the
arterieg an impedance relationshipressure versus flow  observation¥ that it is the arterioles, and not the capil-
constituting a boundary condition for the large arteries |aries, which generate the peripheral resistance. The total
was determined. peripheral resistance of the different organs vary, hence,
Figures 4—6 show that the resulting pressure and flow it is important to choose the minimum radius individu-
profiles all have the correct characteristics. The systolic ally for each of the structured trees, i.e., for each of the
pressure increases away from the heart. The mean presterminal branches of the large arteries. However, unless
sure drops slowly. The steepness of the incoming pres-the diameters of the small vessels are changed dynami-
sure profile increases towards the periphery. Finally, the cally during the time course of a simulation the model
wave propagation velocity of the reflected dicrotic wave does not reflect dynamics due to auto- or baroreceptor
is slower than that of the main wave, and hence, the regulation. The simulations in this paper do not incorpo-
reflected wave separates from the main wave peripher-rate dynamic change of the small vessels and hence re-
ally. This can be seen in Fig. 4, where the distance flect that the individual studied is at rest.
between the main pressure wave and smaller reflected |n summary, our study has shown the feasibility of
(the dicrotig wave is increased towards the periphery. In |imiting the computational domain such that blood flow
addition to showing reasonable characteristics, our re- and pressure can be predicted using a one-dimensional
sults reveal that the one-dimensional model provides anmodel consisting of large and small arteries. The com-
putational domain is limited because of our use of the
structured tree outflow conditions. The structure of the

104.5 T trees representing the smaller vessels allows the com-

plexity of the computations to be decreased fr6i{2")

104.0 to O(n?), wheren is the number of generations in the
_ structured tree. Furthermore, since the structured trees
12’103'5 represent branching vessels, we are able to model the
E propagation of the wave through the small vessels and
o 103.01 thus determine a dynamic impedance characterizing the

underlying physiology®?!

s I e S One might argue that the structured tree model is too

1020 :‘ pomplicated and that the much simpler. windkessel r_nodel

-0 10 20 30 40 is adequate because it can also provide a dynamic out-
X fem] flow boundary condition. The windkessel model is based

FIGURE 6. The graph shows the decrease of the mean pres- on p"_iramegers descrlblng the total reS|St_ance and
sure along the aorta. compliance® It has been shown that the windkessel
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FIGURE 7. Measured and simulated flows. The letter in parenthesis indicates where the flow is measured as shown in Fig. 1.
The figure shows the nine flows measured peripherally to the ascending aorta (the inflow into the arterial tree, see Fig. 3 ).

model cannot capture the dynamics of higher the arterial system that it models. Second, the structured
frequencie$! Moreover, it is not obvious how the wind-  tree model can predict flow and pressure not only in the
kessel parameters should be estimated for the large vesiarge but also in the small arteries, i.e., shifting the pur-
sels. However, it is possible to relate the parameters of pose of the structured tree from being a boundary con-
the commonly used windkessel model to our structured dition to being a more active part of the model.
tree model, which would enable comparison of the two  The idea of using a structured tree in which a simpler
models. The total resistance of the windkessel model set of equations is solved could also be applied to other
corresponds to the DC impedance of the structured tree,areas involving flow in tree-like structures such as flow
while the peripheral resistance corresponds to the high-and water depth in a river delta. However, the use of the
frequency limit of the structured tree. Finally, the total outflow boundary condition presented here is only appli-
compliance of the windkessel model can be related to the cable to phenomena in which there is some scaling law
slope at which the impedance of the structured tree de-that gives rise to a structured tree.
creases from zero frequency towards higher frequencies.
Nevertheless, we find that the structured tree model
has several important advantages. The structured tree is
based on the underlying physiology and it includes wave
propagation effects which enable our model to capture  Written informed consent was obtained from the sub-
the observed oscillations of the impedance in the part of ject in accordance with the regional ethical committee on

APPENDIX A: MAGNETIC RESONANCE
IMAGING
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FIGURE 8. Simulated pressures corresponding to the flows shown in Fig. 7.

human research and the Helsinki Declaration. The sub-quired. The imaging parameters were echo time 6.3 ms,
ject was a 25 years old healthy male subject without any time resolution 30 ms, flip angle 20°, spatial in-plane
known cardiac disease with a body surface area of 1.94resolution 1.2%1.25 mm, slice thickness 6 mm, two
m?. The magnetic resonance imagifiiRI) investiga- signal averages, and velocity encoding30 cm/s. Total
tion was performed on a 1.5 T whole body syst&éay- imaging time for a complete measurement series was
roscan ACS-NT 15, Philips Medical Systems, Best, The approximately one hour with an average heart rate of 51
Netherlands The subject was examined in the supine beats per minute.

position. To minimize motion artifacts caused by heart
motion, image acquisition was synchronized to tRe
wave of the electrocardiogratECG). The body coil was
used for radio frequency transmission while circular sur-  The volumetric flow rates from the different vessels
face coils and a dedicated five-element cardiac synergywere calculated as the product of the cross-sectional area
coil was used as receiver for the peripheral and greaterand spatial mean velocity in each time frame. The ve-
vessels, respectively. Multistack, multislice gradient-echo locity was calculated from the magnetic resonance phase
scouts were performed at each vessel location to estimatémages assuming linearity between magnetic resonance
the geometry of the different vessels for the quantitative signal phase and velocity. The vessel cross-sectional ar-
flow measurements. Based on these scout images, transeas were automatically segmented using active contour
verse gradient-echo, velocity-encoded images were ac-model algorithms to define the vessel boundafiem

MRI Data Analysis
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addition, velocities above the Nyquist limit af 80 cm/s t
were manually unwrapped by adding the velocity value . ;

x x x x x x x
corresponding tar 2. } /<>\
n+ 3 x x x x x x

n=x 1 l“ T
0o 1 1 M-1M-1M

APPENDIX B: ALGORITHMS
FIGURE B1. The values of g and A at n+1 are determined in

. . . . two steps. During the first step, intermediate values at n
Discrete Fluid Dynamic .Equatlons for the Large +1/2 are determined from values at  n. At the second step the
Arteries values at n+1 are determined from the intermediate values.

For the large vessels it is necessary to compute flow

and pressure for each of the vessels, but for the small N
vessels only the impedances at the terminals of the large c=1/— »
vessels(at the outflow are of interest. For the large p A

vessels the equations are solved using the two-step Lax—

Wendroff method and for the small vessels the equationsis the wave speedfor details see Olufsgrf°

are solved using a recursive approach. Define Up=U(mAx,nAt) where 0<n<N denotes
The continuity (6) and momentum(13) equations in the current time stegand not generations of the struc-

conservation form can be solved using the two-step tured trees as in previous sectiprend 0<m<M de-

Lax—Wendroff method. Using the state E(l4) the notes the position along a vessel divided itosubin-

pressure terms of the Continuity and momentum equa- tervals. Slmllarly definitions can be made fBrandS.

tions can be expressed as functions Aof Hence, the  The flow g and cross-sectional aref at time-level

continuity and momentum equations can be solvedgfor +1) can be found from

and A. The flux of (6) and (13) are given by

At
n+1_ | n n+1/2 n+1/2
Um _Um_ AX(Rm+1/2_Rm71/2

2
R=(R1,R2)=(q,%+8 (B1)
At
+ 5 et SR (B3)
and the right-hand side by

The intermediate valueR.Y2, S+¥2 RM12 - and
S=(s Sz)=(0 _ ZWVqR+ 9B drg (B2) "2 at time-leveln+ 1/2 can be found usingg1) and

L ’ SA rg dx /- (B2) combined with

Using the definitions forR and S, and assuming that
U=(A,q) the continuity(6) and momentun(13) equa-
tions can be written as

n n
Uiy 1ot Y1

n+1/2__
untre= 5

N E B R 1.~ R 2 St S 1
J Us 0 RS 2 AX 2
gt ox

for j=m+1/2 andj=m-—1/2.

Assume that the grid is uniform with the distance be-
tween any two grid-points being given iy and At for Discrete Boundary Conditions for the Large Arteries
the spatial and temporal axes, respectiv@lye Fig. BL

Then, the Lax—Wendroff method is stable if the Courant ™ Order to use the two-step Lax—Wendroff scheme at
Friedrichs Lewy (CFL) conditior? is fulfilled for both ~ the boundaries, a boundary condition must be applied.
choices of sign This can be done by combining the boundary conditions

with the Lax—Wendroff schemé3) and solving forq
andA. Details follow for the different types of boundary
conditions that we have to consider.

-1
Ax |A

Inflow Boundary ConditionThe inflowq into the aorta is
whereq/A=xc is the characteristic wave-propagation ve- given by the periodic function shown in Fig. 3. Inserting
locity, g/A is the mean velocity and g into (B3) gives a nonlinear equation f@, which can
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t 1 N-1
n+1 EEEEENEEEEEEEN
L " Values from this period n 1 + 1 Values from the previous period
n+ 3 0] X n-k>0 n-k<0
n . FIGURE B3. The discretized convolution integral (38) runs
1 0 1 'i" z over a whole period. For a given time ~ t=nAt the values for p
2 2 predicted from this period is used for k=1,...,n and the

FIGURE B2. Left boundary: All variables are known at the
points marked with a cross. In order to determine the value

of AJ*', we apply the boundary condition for ~ gj*Y? at the
point marked with a square, and from taking the average of
this point and the point at (1/2,n+1/2) it is possible to de-
termine an approximate value at the ghost point marked with

a circle. Finally, AZ*! can be found using this construction
and the Lax—Wendroff scheme (B3).

be solved using Newton's method. The Lax—Wendroff

scheme (B3) requires evaluation ofy™; 42 which, as

shown in Fig. B2, can be found as follows

n+1/2_

Jo

n+1/2__ n+1/2__

n+1/2 n+1/2
)=011,"=20g

1
E(Q—yz +035 Y.

A1
(B4)

Outflow Boundary Condition§he outflow boundary

values predicted in the previous period for k=n+1,..., N

-1.

Bifurcation ConditionsBifurcations represent an outflow
boundary for the parent vessel and an inflow boundary
for the daughter vessels. In this case, the bifurcation
conditions (16) and (18) must be combined with the
Lax—Wendroff schemé&B3) to solve forqg,, and A,
M=M for the parent vessel antt=0 for the daughter
vessels. As in the case of the inflow boundary condition,
ghost points are introduced in order to get these esti-
mates. As described in the section on Boundary Condi-
tions for the Large Arteries, the case study presented in
this paper usg18) for all bifurcations except for the
bifurcation from the ascending aorta into anonyma and
the aortic arc. In the latter bifurcation the energy loss is
substantial and17) is used instead of18). In the bifur-

condition for the large arteries should be evaluated at cations using16) and(18) together with the ghost points

each of the terminal vesselsee Fig. 1, i.e., atx_
=MAX, wherex, is the length of the vessel ard is

we can find @)%Y? and @A)V Y2, where |
=pad;,d,. Hence, the bifurcation conditions, at time-

the number of subintervals along the vessel. For any level n+1/2 andn+1, lead to the following equations.

given terminal vessel the outflow boundary condition is
determined by the convolution integrég8)

T
p(XL !t): L*TQ(XL ,t_ T)Z(XL ,’T)dT,

which can be discretized by

N—-1
P(MAX,NAt)=pl=qhySAt+ >, q<n_k>NZKAAt,
k=1

M
(BS)

where t=nAt is the current timeN is the number of
timesteps per period, and )y denotes the modulo op-
erator, the range of which is the s€8,1,... N—1}.
The sum in(B5) contains the terms from this and the
previous period depending on the valuekptee Fig. B3.
Evaluating the outflow boundary condition is a bit
subtle, sincep(x, ,t) (and henceA) is not known ex-
plicitly, but only as a function ofg. Consequently, in-
serting the outflow boundary conditio(B5) into the
Lax—Wendroff schemd&B3) gives rise to a system of

Conservation of flow(16) across the bifurcation

(Gpala= (Aa )b+ (a,)b (B6)
and the pressure conditiqii8)
(Pg)b=(Ppallv (B7)

wherei=1,2 andj=n+1/2n+1. The latter equation
can be written in terms oA using the state Eq.14):

(Ag))o [(Agpa
A pa)“( (Apally

wherei=1,2, j=n+3n+1, andf(ro) =4Eh/(3r,) rep-
resents the changing stiffness or compliance of the ves-
sels. Note that if(17) is used instead of18) Egs. (B7)
and (B8) should be modified accordingly.

As in the case of the large arteries, combining the

(fo)o| 1—

(B8)

nonlinear equations which can be solved using Newton’s bifurcation conditions(B6) and (B8) with the Lax—

method (for details see Olufserf°

Wendroff scheme(B3) yields a number of nonlinear
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The array “art” comprises information about the ves-

sels shown in Fig. B4; 48] comprise vessel 7, &#]

5 |Ls=18cm vessel 6, and dit] vessel 5. The number of the vessels
(rp)s = (r¢)7 = 111 cm in Fig. B4 correspond to the numbers in the full arterial
tree (see Fig. 1. However, since vessels 6 and 7 do not
correspond to terminal vessels in the full arterial tree, we
have left out values for the minimum radii and instead
noted that a minimum radius must be provided at the

Ly=10cm

(r)e =028 cm  (rp)s = 1.09 cm appropriate location.
FIGURE B4. An arterial tree with three branches. For each
branch its length, inlet and outlet diameters are specified. Algorithm 2: Solving the Equations for the Large
The example shown in this figure corresponds to the bifur- Arteries
cation from the aortic arc into the carotid artery and the
descending aorta (from 5 into 6 and 7 on Fig. 1 ). ® While t < finaltime [-1.125CI’T]

» For all vessels d¢-0.75cn]

O Check that the CFL-condition applies.
equations which can be solved using Newton’s method O Solve the equations for all interior points
(again, see Olufséfi for details. using the Lax—Wendroff schem@3).

O Update the inlet boundary conditiciiB4)

Algorithms for the Large Arteries for the vessel connected to the heart

(ar{1]).

In the case study presented in this paper the loss O Check if the vessel has daughters. Use the
coefficients are set to zero, except in the bifurcation from bifurcation conditions(B6) and (B8) if
the ascending aorta into the aortic arc and anonyma. This the vessel has daughters, otherwise the
has the advantage that all parameters specific to a given vessel is terminal and the outflow bound-
vessel can be specified locally. The parameters specified ary condition(B5) should be used.
for each vessel are: length ), inlet radius ¢,), outlet
radius (), pointers to daughter vesseals and d, (art Algorithms for the Small Arteries

[d,] and arfd,]), radius at which the structured tree
should be terminatedr ,;,), number of points per vessel

(#) ’ﬂfh.e vi,\ssel st|}f<fness ﬁonstantklc k.2 t ék?’)’ da_md loss 4 and 4. Assume that the number of timestéfjsa root
coefficients Kq,, Kq,) where appropriatéas discussed o5 ¢ and the minimum radiusr(,;) has been

earlien. Note, if the vessel has daughters, the parametergiven_

specifying the minimum radius should be zero. If the

vessel is terminal, no pointers are needed_ f_or daugh_ter Algorithm 3: The Root Impedance@w)
vessels, but the parameter specifying the minimum radius _

must be set. For each vessel, the parameter values spe- B For each frequency determin&0,w) as follows:

The recursive approach to compute the root imped-
ances of the structured trees is described in algorithms 3

cific to the vessel will be specified when the tree is Compute the impedance fo¥ values ofw. Since
initialized. Algorithm 1 describes initialization of the ar- Z is self-adjoint the impedance can be computed
terial tree shown in Fig. B4 and algorithm 2 describes using the following two steps.

the solution to the hyperbolic equations @) and (13). » Fork=N/2+1N+1 do

O Let all previous computed results be reset

) _ to zero. Use the list “comp” to store
Algorithm 1: The Arterial Tree temporary results such that it is not nec-
essary to reevaluate identical parts of the

m Number of vessels in the netwofkbrves=3).
m Starting time for the simulatiofitstart=0). structured tree. _
m Ending time for the simulatiortfinaltime=6). © Find Z(0w) recursively using the func-
m initialization of the arterial tree (art=new t|on_ Zo(@,0,0), which is described in Al-
vesinbrves). gorithm 4_‘ ,
m arf3]=new ve$l.0,1.11,1.09,0,0, ryin)s4Ky, > Apply self-adjointness by
k,, k3,0,0].
m arf2]=new ve$19.0,0.29,0.28,0,0, rf)24K;, Z(0,0) =Z(0,01 4 ny2)-
k,, k3,0,0].
m arfl]=new ve$l.8,1.14,1.11,4i2],ar{3], 0,4k, m Determinez(0t) by inverse Fourier transform of

k2, k3,0,0). Z(O,a))
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Algorithm 4: Recursive computation of@o,n, ,Ng)

(1) Compute all parameters for the vessel and initialize

the array “comp” to zero:
B Radiusry=a"«B"8r 0.
Note, n, andng correspond to specific values of
k andn—k in Eq. (20); this new notation is more
convenient for the present description.
m Cross-sectional arefy=7r3.
This definition is similar to the one for the large
arteries defined above E).
m Stiffness/compliancé(ry)=4Eh/(3ry).
This factor is defined below EqBS).
m Vessel lengthL=rgl,,.
This factor is defined below Ed36).
Compute the wave-propagation velocity(33) and
the scalarg [defined above Eq34)]. These depend
on F; (27) and thus on the Womersley number
[defined below Eq(25)].
Recursive algorithm:
B If ro<rpm then
> Z (wy,n,,ng)=terminal resistance.
m else
» If the root impedance of the left daughter
(n,+1,ng) has been computed previously then
O Zp(wy,n,+1ng)= comp(n,+1ng).
> else

O Compute the root impedance of the left
daughter by callingZy(wy,n,+1ng) re-
cursively.

O If the root impedance of the right daughter
(n,+1ng) has been computed previously
then Zy(wy,n,,Ng+1)= comp(n,,ng
+1).

O else Compute the root impedance of the
right daughter by callingZy(wy,n,,Ng
+1) recursively.

B Z (0N, ,Np)=10Z5 (wk,ny+10p)
+Zo Moy N, np+1)],
If w#0 then
u ZO(wklnavn,B)
ig~sin(wL/c)+Z(L,w)cos@L/c)
~ cosL/c)+igZ(L,w)sin(wL/c)

2

©)

(37).
(4)

(35).
(5) else, ifw,=0 then
_ Buly
[ ] Zo(wk,na,nﬁ)—?JrZL(wk,na,nB),
(6) Update the table of Sre-computed values:

B comp(n,,ng)=Zo(wy,N,,Ng).

(36).

For all of our simulations the terminal resistance is

Q.UFSEN et al.
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FIGURE B5. Aortic pressure 8 cm after the aortic valve. The
plot shows that p(x,t) converges after about four periods.

Algorithms (3) and (4) only determine the frequency-
dependent impedance, while the outflow boundary con-
dition (38) for the large vessels require a time-dependent
impedance. However, the response functifd,t) and
hence the impedance that appears in the convolution
integral in (38) can be found by inverse Fourier trans-
form of the root impedanc&(0,0). The convolution
spans one period, hence, knowledge of the solution at all
timesteps during that period is required. Since HGS.
and (13) are solved using the explicit two-step Lax—
Wendroff method, the solution is not simultaneously
available at all times during the period. Because we
assumed that propagation of the flow and pressure waves
is periodic this difficulty can be overcome using an it-
erative approach. At any timevalues from the previous
period (for t’ €[t:T]) are used together with the ones
already available fot’ €[0:t] (see Fig. B3. Iteration is
carried out over a number of periods until a stable solu-
tion is reached. Experiments suggest that a stable solu-
tion is reached after about four periogsee Fig. B5.
Another possibility would be to investigate whether the
equations can be solved using a self-similar approach.
This does not seem to be possible because of the viscous
treatment of the momentum equation and the manner in
which the tree is terminated when a fixed radius is
reached. We have, however, been able to solve for the
input impedance of an inviscid, infinite, self-similar tree
(for details see Olufserf°
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