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1 Introduction

We are concerned with decision making in discrete-time dynamic environments that

are hard to predict and to model explicitly, due to complexity or lack of information.

How would a firm optimally choose its inventories if the demand for its product is

stochastic and subject to unpredictable structural breaks?

How would a police department decide about the number of police cars and their patrol

routes if crimes do not follow any stationary pattern?

How should patients in an emergency ward be assigned to doctors if there is no dis-

cernible system in arrival of patients with different urgency of medical attention?

In economics, the standard approach to dynamic decision making involves modelling

the environment as a specific stochastic process and then optimizing within this model.

Unknown parameters of the process are estimated by statistical methods. However,

this approach typically comes with several problems. Different assumptions on the

underlying stochastic process lead to different solutions, and the true environment is

never known. Explicit and tractable solutions only exist for simplest scenarios. Com-

plex models that include more realistic features, such as structural breaks at unknown

time, easily make the problem intractable. Tractable models often cannot approximate

the real environment, resulting in serious errors in decision making.

An alternative approach that is popular in machine learning considers decision making

with expert advice and the well known no-regret problem.1 It can deal with envi-

ronments of arbitrary complexity—in fact, the modeller does not even need to know

anything about the environment. In this approach, the decision maker is equipped with

a finite set of benchmark strategies or experts that she uses as targets. Her objective

is to perform similarly to or better than each of them, without making any specific

assumptions about the environment. These benchmark strategies could be simple

heuristic decision making rules, standard practices in the given situation, or solutions

to the problem under specific assumptions about the environment. However, this ap-

proach has two caveats from an economist’s point of view. First, a decision maker is

infinitely patient, there is no discounting of payoffs in practically all papers. Second,

the decision maker has the power to commit to a decision rule, as the performance is

only measured at the outset.

1For a survey of this literature see Cesa-Bianchi and Lugosi (2006).
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This paper addresses these two caveats by inserting a new pair of elements into decision

making with expert advice: discounting of future payoffs and dynamic consistency. We

refer to our methodology as dynamic benchmark targeting. We design a decision-making

rule that dynamically combines benchmark strategies and achieves a similar or superior

present-value performance to each of them in all environments, at each point of time,

provided the decision maker is sufficiently patient.

Dynamic consistency, while being a standard assumption for economists (see Strotz,

1956; Rubinstein, 1998), is a novel feature that our paper introduces to the literature

on decision making with expert advice. We consider a decision maker who does not

commit to any course of actions from the start. She asks herself in every period, after

every history, whether the previously chosen strategy will continue to perform well

enough relative to the set targets and whether she should continue using it. All the

literature on decision making with expert advice assumes commitment to a particular

strategy from the start, and thus ignores dynamic consistency.2 All but two decision

rules used in this literature are not dynamically consistent. The two exceptions are

discussed at the end of this section.

Discounting of future payoffs is the paradigm in economic decision making in which one

is forward-looking and considers tradeoffs over time. The literature on decision making

with expert advice considers a backward-looking decision maker concerned with sums

or simple averages of payoffs. The two exceptions are Fudenberg and Levine (1999)

and Olszewski and Peski (2011) that study decision makers who care about future

discounted payoffs, but assume commitment to a particular strategy from the start,

thus ignoring dynamic consistency.

Having both features, dynamic consistency and discounting of future payoffs, makes

Blackwell’s Approachability Theorem (Blackwell, 1956) and its extensions (Lehrer,

2003; Lehrer and Solan, 2009) inapplicable. A different method has to be used in this

case.

We show that dynamic consistency is intimately linked to the ability to react to recent

changes in the environment. When evaluating past performance, a dynamically consis-

tent decision rule must not place the same weight on all past events, recent and distant

alike. Instead, recent periods should carry a greater weight, as if one gives recent

2Some papers consider infinitely patient decision makers who care about long-run average streams
of payoffs, so the dynamic consistency issue does not arise (e.g., Hart and Mas-Colell, 2000, 2001).
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events more attention. There are many ways to accomplish that, such as assignment

of exponentially decaying weights, equal wights with bounded recall, or equal weights

with periodic restarts by forgetting all past information. It turns out that there is a

strategy that provides better results, both numerically and asymptotically. It requires

the decision maker to have a bounded recall, m, and in every period t to average out

the payoffs over last kt periods, where each kt is an independent and uniformly random

draw from {1, ...,m}. The recall length m is chosen by the decision maker. We de-

rive an optimal length of recall and show that the achieved performance is arbitrarily

close to that of the best benchmark strategy, provided the decision maker is sufficiently

patient. Importantly, we provide an upper bound on how close the decision maker’s

performance is to the best benchmark, for discount factors bounded away from one.

Infinite patience is a simplifying model of someone who is very patient or who looks

far ahead. In the context of this paper we discover that being very patient cannot be

approximated by infinite patience. There is a discontinuity as the discount factor tends

to one, as we further comment on in Section 4.

Related Literature. The problem of outperforming in hindsight a given set of

benchmark strategies, or the no-regret problem, was first considered by Hannan (1957).

A substantial literature revisited the problem and offered solutions for a variety of

applications. This methodology is used, among other things, to combine competing

forecasting models (Foster and Vohra, 1993, 1999; Littlestone and Warmuth, 1994),3 to

design investment portfolios and derive bounds on the prices of financial instruments

(DeMarzo et al., 2006, Chen and Vaughan, 2010), to investigate learning in games (Fu-

denberg and Levine, 1995; Freund and Schapire, 1999; Hart and Mas-Colell, 2000, 2001)

and to compute efficient algorithms for job scheduling (Mansour, 2010), online routing

and shortest paths problems (Takimoto and Warmuth, 2003; Blum et al., 2006).4 In

the above literature, a decision maker commits to a decision rule in the initial period.

In this paper we investigate what happens if the decision maker does not have the

power to commit, and hence is tempted to change the rule at later points in time.

Strategies with diminishing weights on past observations have been introduced in the

literature, but without concern neither for dynamic consistency, nor for optimization of

3For an overview of the forecast combination literature see Timmerman (2006) and Clemen and
Winkler (2007).

4This is also related to how to aggregate opinions (Larrick and Soll, 2006; Jose et al., 2014).
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the discounted sum of future payoffs. Cesa-Bianchi and Lugosi (2006, Ch. 2.11) eval-

uate the past regret as a sum of past single-period regrets with diminishing weights

and show that the past regrets can vanish if and only if the sum of the weights di-

verges. Lehrer and Solan (2009) consider a decision maker who periodically erases her

memory, and show that no regret can be achieved with a sequence of strategies with

bounded recall. While Cesa-Bianchi and Lugosi (2006) and Lehrer and Solan (2009)

only consider performance from the ex-ante perspective, we show that their strategies

are dynamically consistent. However, the aim of our paper is not a mathematical proof

of existence, but a formulation of methodology and design of a decision rule with good

properties. Our rule provides a bound on the performance that is superior to those

that we derive for the rules of Cesa-Bianchi and Lugosi (2006) and Lehrer and Solan

(2009).

Our paper also connects to the psychology and experimental literature that documented

the so-called recency effect, according to which more distant events are regarded as less

relevant.5 In the forecast combination literature, the recency effect, manifested as

diminishing weights on past events, have been used as a heuristic or empirical per-

formance improvement tool, e.g., Bates and Granger (1969), Winkler and Makridakis

(1983), Timmerman (2006), Sánchez (2008), and Mallet et al. (2009). In this paper we

identify a novel strategic reason for the recency effect (Section 4).

2 Example

For illustration, let us consider the inventory control problem. Even though our ex-

ample is simple and stylized, it has enough structure to demonstrate how difficult and

complex it would be to solve it by standard economic methods. The example shows

how our approach tackles the problem while disregarding its complexity.

A retailer decides what quantity of a product to hold in stock at the beginning of each

day t = 1, 2, . . . The product can be restocked every morning for free, but overnight

storage of unsold goods is costly. The daily demand for the product, qt, follows a

stochastic process that we make no assumptions about. The tradeoff is that a larger

5This goes back at least to Watson (1930) and Guthrie (1952). See, e.g., Roth and Erev (1995),
Erev and Roth (1998), Camerer and Ho (1999), Ray and Wang (2001) and the references within.
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stock in the morning means more profit in a day with high demand, but more storage

cost in a day with low demand.

There are three parameters: a per-unit profit from sales π, a per-unit cost of overnight

storage c, and an annual interest rate r. Denote by st the stock at the beginning of

day t (after the restocking has taken place) and let yt = min{st, qt} be the daily sales.

Then st− yt is the amount of goods left overnight. The retailer’s profit in day t is thus

πyt − c(st − yt).

The performance evaluated at day t0, measured as the normalized present value of

future profits, is

Πt0 = (1− δ)
∞∑
t=t0

δt−t0
(
πyt − c(st − yt)

)
,

where δ is the daily discount factor, δ = e−r/365.

The standard approach to this problem requires specific assumptions about the stochas-

tic process {qt} that determines demand. Since nothing is known about the stochastic

process, any specific assumptions may be unwarranted, resulting in an inadequate so-

lution. Moreover, if the stochastic process is not ergodic, tractability can become a

problem. For instance, this is the case when there are structural breaks in demand

occurring at unknown points in time.

Our approach circumvents these difficulties. Instead of focusing on the environment,

the decision maker focuses on a few benchmark strategies that are candidates for being

“good” decision rules. Her aim is to perform similar to or better than each of them.

One such benchmark could be, for example, the fixed quantity system that dictates to

restock daily up to a fixed quantity s0 > 0. Another such benchmark could be the

replenishment system that dictates to restock up to a level s̄ whenever the stock has

fallen below s. The three parameters, s0, s, and s̄, for instance, can be updated daily

based on past data.

We design a decision rule that performs in any environment similarly to or better than

each of these two benchmarks. In particular, if the true environment is i.i.d., in which

case the fixed quantity system is optimal, then our rule will approximately follow the

fixed quantity system. If instead the environment turns out to be Markov, where the

replenishment system performs well, then the retailer will also performs well by using
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our rule.

In reality, benchmarks perform differently at different points of time. Our decision

rule tracks which one performs better and keeps the retailer’s performance within a

small error ε of that at all times. It does so by balancing between the two benchmarks,

combining their actions with dynamically adjusted weights that depend on the bench-

marks’ past performance, as described in Section 3.2 below. In particular, it is enough

that one of the benchmarks performs well in order to guarantee good profits with our

rule.

How well does our rule perform? Clearly we cannot expect such a benchmark combining

rule to perform better than all the benchmarks. We show that our rule may perform

worse than the best benchmark, but only by a fairly small amount called the error

bound. For example, let the annual interest rate be 5%, so the daily discount factor is

δ = e−0.05/365 ≈ 0.999863. According to our formula (3) in Section 3.2, the error bound

of our rule is 4.3% of the daily profit range.6 So, the present value of the retailer’s

future profits is guaranteed, at any time, to be at least as much as that of the best

benchmark strategy minus 4.3% of the daily profit range.

3 Dynamic Benchmark Targeting

3.1 Model

We now introduce the formal model of benchmark targeting. A decision maker takes

actions in discrete time periods t = 1, 2, .... In each period t the decision maker chooses

an action at from a set A of available actions. Then, a state of environment, ωt ∈ Ω,

is realized and observed by the decision maker. The decision maker’s payoff in that

period depends on both at and ωt and is denoted by u(at, ωt).

In each period t, before the decision maker makes her choice, she is provided with

recommendations of n benchmark strategies. Each benchmark strategy i recommends

an action rt(i) ∈ A. Then, the decision maker chooses an action at ∈ A as a func-

6Our decision rule’s actions are convex combinations of actions dictated by the benchmarks, so the
maximum stock st can never exceed s̄. Hence, the daily profit is within [−cs̄, πs̄], and the maximum
profit variation is (π − c)s̄.
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tion of the benchmark recommendations rt(1), ..., rt(n), as well as all past states and

recommendations.

We make the following assumptions. The set of actions A is a convex and compact

subset of Rd, d ≥ 1. The payoff function u is uniformly bounded, w.l.o.g. u(a, ω) ∈
[0, 1]. In addition, u(a, ω) is concave in a for every ω ∈ Ω.7 The state space Ω is a

compact space (finite or infinite). The sequence of states of environment, ω̄ = {ωt}∞t=1,

is arbitrary. For example, it can be determined by a discrete-time stochastic process,

which we make no assumptions about.

The profile of a realized state of the environment and the actions recommended by the

n benchmarks in period t is denoted by xt = (ωt, r1,t, . . . , rn,t) and called an event in

period t. Let ht = (x1, . . . , xt) be the history of the events up to period t and let H
be the set of all finite histories, including the empty history. For each i = 1, . . . , n, a

benchmark strategy is described by a map pi : H → A that associates with every history

ht−1 an action rt(i) in A. A decision rule of the decision maker is a map p : H×An → A

that associates with every history ht−1 and every profile of current recommendations

rt = (rt(1), . . . , rt(n)) an action rt in A to be chosen in period t.

In what follows, for a given set of benchmark strategies p1, ..., pn and a given decision

rule p, we write for each period t

rt =
(
p1(ht−1), ..., pn(ht−1)

)
and at = p(ht−1, rt).

These notations permit two interpretations of rt that are equivalent for our purpose. Ei-

ther the decision maker knows benchmark strategies (p1, ..., pn), and hence can deduce

their recommendations, or she directly observes the recommendations of the bench-

marks and does not need to know their strategies.

For a given sequence of states, ω̄ = {ωt}∞t=1, the performance of a decision rule p from

the perspective of period t0 is measured as the (normalized) discounted sum of future

payoffs that this decision rule delivers,

Ut0 (p, ω̄) = (1− δ)
∑∞

t=t0
δt−t0u(at, ωt), (1)

7The convexity of A and concavity of u in the action implies that every mixed action (lottery over
actions) is dominated by a pure action in A. So there is no need to consider mixed actions. The
extension of the model to finite and non-convex actions sets is discussed in Section 5.
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where δ ∈ (0, 1) is the decision maker’s discount factor. The performance of each

benchmark i from the perspective of period t0 is the discounted sum of future payoffs

that the decision maker can obtain by always following the recommendations of i,

Ut0(pi, ω̄) = (1− δ)
∑∞

t=t0
δt−t0u(rt(i), ωt).

We now introduce “dynamic benchmark targeting.” The decision maker wishes to guar-

antee the performance within a given error bound of, or better than, the performance

of each benchmark strategy, under each possible sequence of states, and from perspec-

tive of each period of time. “Benchmark targeting” refers to the decision maker’s goal

to outperform all the benchmarks in a given set, allowing only a limited error margin.

“Dynamic” refers to the dynamic consistency of the objective of being within the same

error bound after every possible past history.8

Definition 1. A decision rule p for dynamic benchmark targeting w.r.t. benchmark

strategies p1, . . . , pn has error bound ε if

Ut0(p, ω̄) ≥ max
i∈{1,...,n}

Ut0(pi, ω̄)− ε (2)

for all periods t0 = 1, 2, ... and for all sequences of states ω̄.

Note that condition (2) is a sure inequality that has to hold for every realized sequence

of states. Performance measures Ut0(·, ω̄) are not expected utilities, these are the

discounted sums of the future payoffs that will be realized under the given sequence of

states ω̄.

We assume that past states are observable. Thus, the decision maker can calculate in

retrospect for each period in the past what she would have achieved with each action.

In fact, for our results to hold, observability of past states is unnecessary, so long as

the decision maker can observe her (foregone) payoffs that she would have received if

she had followed any particular benchmark.9

8This objective is analogous to the ε-sequential optimality notion, or ε-subgame perfect equilibrium
in repeated games (see Radner (1980) and Mailath et al. (2005)), where ε is the tolerance level that
keeps the decision maker from changing her behavior so long as the payoff is within ε of the optimum.

9Actually, it suffices to have unbiased estimates of payoffs of each benchmark in each period.
Everything goes through after replacement of realized performance by expected performance. We use
this insight in Section 5 to apply our methodology to the case where only payoffs from chosen actions
are observed.

9



For clarity of exposition we have assumed that each benchmark i’s recommendation is

a deterministic function pi(ht) of past states (and benchmark recommendations). Our

model can deal with arbitrary sequences of states and recommendations, where a rec-

ommendation in each period is simply an action. No assumptions are necessary about

how they are generated. For example, such sequences can be realizations of a stochastic

process where states and benchmark recommendations are interdependent. However,

an important assumption is that these sequences of states and recommendations are

exogenous to the decision maker’s problem and do not depend on the choices made

by the decision maker. Otherwise, a decision rule with a small error bound need not

exist, because some actions of the decision maker may trigger an irreversible change in

all future payoffs.10

3.2 Decision Rule

We now introduce a simple decision rule for dynamic benchmark targeting and then

present an error bound that shows how close it can track the best benchmark at

any point in time. According to this decision rule, in each round the decision maker

chooses a convex combination of the recommendations of the n benchmark strategies.

The benchmarks that made better past recommendations receive greater weights.

Fix a period t with a history ht−1. For each benchmark i denote by Ct,k(i) the aggregate

payoff over the last k periods,

Ct,k(i) =
∑t−1

s=t−k
u(rs(i), ωs),

where we define u(·, ωs) = 0 for all s ≤ 0, i.e., all payoffs prior to the first period are

set equal to zero. Define the k-score of each benchmark i as the logistic weight of these

aggregate payoffs,

λt,k(i) =
eηCt,k(i)∑n
j=1 e

ηCt,k(j)
,

10For example, consider the problem with two states, Ω = {0, 1}, where the decision maker aims
to guess the state in each period, u(at, ωt) = 1 − |ωt − at|, at ∈ A = [0, 1]. The nature picks
ω1 ∈ {0, 1}, equally likely. If the decision maker has guesses ω1 correctly, then the nature repeats the
same state forever. Otherwise the nature is i.i.d. uniformly random forever. Among the two constant
benchmarks, one always guessing 0 and the other always guessing 1, one of them guarantees the
maximum normalized discounted payoff, 1. But the decision maker can only guarantee 1

2 . This issue
in the context of the standard no-regret problem is highlighted in Schlag and Zapechelnyuk (2012).

10



where η ≥ 0 is a parameter. Then compute the average of k-scores of each benchmark

i for k from 0 to m − 1, 1
m

∑m−1
k=0 λt,k(i), where m is an integer parameter. Note that

the average scores of all benchmarks add up to one. The decision rule p(m,η) that

depends on m and η combines the benchmark recommendations by assigning to each

recommendation rt(i) the weight equal to i’s average score,

p(m,η)(ht−1, rt) =
n∑
i=1

(
1

m

m−1∑
k=0

λt,k(i)

)
rt(i).

In this way the agent chooses a convex combination of the recommendations.

The decision rule has two free parameters, m and η. The value m− 1 is the maximal

number of previous periods that are included in the performance evaluation, whereas η

is a sensitivity coefficient used in the logistic formula. We choose these free parameters

to optimize the order of convergence of the error bound as δ approaches 1.

Theorem 1. For a discount factor δ ∈ (0, 1) let

η = 2
4
3 (lnn)

1
3 (1− δ)

1
3 and m =

η

2(1− δ)
+ x,

where x ∈ (−1, 1] is the adjustment such that m is an even integer. Decision rule p(m,η)

has error bound

ε =
3

4

(
2(1− δ) lnn

) 1
3 +

7

96

(
2(1− δ) lnn

) 2
3 . (3)

The proof is in Appendix A.

Note that ε → 0 as δ → 1. Hence, if the decision maker is sufficiently patient, or if

the interval between two consecutive periods is small, then the decision maker can be

guaranteed to perform arbitrarily close to, or better than, the best benchmark strategy,

from the perspective of any period.

Our error bound and the optimal parameters m and η are easily computed for specific

values of δ and n. Table 1 demonstrates the numerical value of the error bound for

the case of annual interest rate r = 0.05 and payoffs evaluated daily (δ = e−0.05/365 ≈
0.999863), weekly (δ = e−0.05/52 ≈ 0.999039) and monthly (δ = e−0.05/12 ≈ 0.995842),

with the number of benchmarks n = 2, 4, and 10. As evident from (3) and illustrated

numerically by Table 1, the magnitude of the value of 1−δ (or the frequency of periods

T ) plays an exponentially greater role on the size of the error bound, as compared to
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Periods per year δ = e−0.05/T n m η ε
T = 365 0.999863 2 420 0.115 4.3%

4 528 0.145 5.5%
10 626 0.172 6.5%

T = 52 0.999039 2 114 0.220 8.3%
4 144 0.277 10.5%
10 170 0.328 12.5%

T = 12 0.995842 2 44 0.358 13.7%
4 54 0.451 17.3%
10 64 0.535 20.1%

Table 1: Numerical percentage values of the error bound.

the number of benchmarks n. Doubling (1− δ) has the same effect on the error bound

as making n squared.

3.3 Comparison to Other Decision Rules

The decision rule p(m,η) defined in the previous section performs well when δ is large.

One wonders whether alternative, possibly even simpler candidates perform similarly.

In this section we present the error bounds of a few alternative rules, and then proceed

in the next section to derive general necessary properties of rules with low error bounds.

Let Bt(i) denote the evaluation of the past performance of each benchmark i. We

consider four rules that combine the recommendations of the benchmarks by the ex-

ponential weights of their past performances Bt(i),

q(ht−1, rt) =
n∑
i=1

(
eηBt(i)∑n
j=1 e

ηCt(j)

)
rt(i). (4)

These four rules use the same formula (4) to combine benchmarks, but differ in how

they evaluate benchmark past performance, Bt(i).

First, consider the exponentially weighted average forecaster rule introduced in Little-

stone and Warmuth (1994). This rule aggregates all past payoffs from the start for

each benchmark i,

Bt(i) =
∑t−1

s=1
u(rs(i), ωs). (5)

12



This rule has the error bound at least 1/2. In fact, in Section 4 we prove a more general

result that any decision rule that relies “too much” on the distant past will have a

large error bound (Theorem 2). Such decision rules include, among others, calibrated

forecasting of Foster and Vohra (1993, 1999), smooth fictitious play of Fudenberg and

Levine (1995), and regret matching of Hart and Mas-Colell (2000, 2001).

As a good decision rule must focus on the recent past, a natural candidate is the rule

that aggregate payoffs only over the last m periods for a fixed parameter m,

Bt(i) =
∑t−1

s=t−m
u(rs(i), ωs).

This rule is not satisfactory either, since its error bound is bounded away from zero.

It does not converge to zero as δ → 1. It is possible to construct an example, as in

Zapechelnyuk (2008), where the decision maker’s and benchmarks’ performances are

cyclical (the cycle length is a function of the length of recall m), so the decision maker

underperforms relative to some benchmark by a constant that is independent of m.

Another simple possibility is to make the decision maker periodically “forget” the past

and start anew. This periodic-restart rule, considered in Lehrer and Solan (2009),

evaluates the past performance of each benchmark i by its aggregate payoff since the

last restart,

Bt(i) =
∑t−1

s=ρ(t)
u(rs(i), ωs),

where restarts occur in periods m, 2m, 3m,..., and ρ(t) = mb t−1
m
c denotes the period

of restart preceding t. Denote by q̄(m,η) the periodic-restart rule with restart period m

defined by (4), where Bt(i) is defined above. We now present an error bound of this

rule.

Proposition 1. For every δ ∈ (0, 1) there exists (m, η) such that the periodic-restart

rule q̄(m,η) has the error bound

ε =
(
3
2

)4/3
(lnn)1/3(1− δ)1/3. (6)

The proof is in Appendix B.

Lastly, we consider the decision rule that places exponentially decaying weights to more
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distant periods, referred to as the exponential-decay rule,

Bt(i) =
t−1∑
s=1

αt−su(rs(i), ωs) (7)

for some α ∈ (0, 1). This is a special case of Cesa-Bianchi and Lugosi’s (2006, Ch. 2.11)

rule of aggregation of the past performance with diminishing weights.

Denote by q̃(α,η) the exponential-decay rule defined by (4) with the above choice of

Bt(i). We now determine the error bound of this rule.

Proposition 2. For every δ ∈ (0, 1) there exists (α, η) such that the exponential-decay

rule q̃(α,η) has the error bound

ε = 3
2
(lnn)1/3(1− δ)1/3 + 1

2
(lnn)2/3(1− δ)2/3. (8)

The proof is in Appendix B.

Periods per year δ = e−0.05/T n Our Rule Periodic Restart Exponential Decay
T = 365 0.999863 2 4.3% 7.8% 7.0%

4 5.5% 9.9% 8.8%
10 6.5% 11.7% 10.4%

T = 52 0.999039 2 8.3% 15.0% 13.5%
4 10.5% 18.9% 17.1%
10 12.5% 22.4% 20.4%

T = 12 0.995842 2 13.7% 24.4% 22.4%
4 17.3% 30.8% 28.5%
10 20.1% 36.5% 34.1%

Table 2: Numerical comparison of error bounds of three decision rules.

The rates of convergence of the error bounds in Propositions 1 and 2 are the same as

that of our rule p(m,η), but their leading constants are substantially larger. For the

periodic-restart rule the leading constant is
(
3
2

)4/3 ≈ 1.717 and for the exponential-

decay rule the leading constant is 3
2

= 1.5, while the leading constant for our rule is
3
4
21/3 ≈ 0.945, where 1.717 > 1.5 > 0.945. The error bounds of these two rules are also

compared to the error bound of our rule numerically in Table 2.

Intuitively, the periodic-restart rule performs worse than our rule because of fixed

restart periods. The “adverse” nature can exploit the knowledge of restart periods
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by changing which benchmark is best half way to the next restart to make the rule

perform badly when evaluated from the perspective of this period. The idea to avoid

this vulnerability by concealing the periods of restart led to the construction of our

rule.

The reason why our rule performs better than the exponential-decay rule roots in our

method of proof. Our derivation of the error bounds relies on Cesa-Bianchi and Lugosi’s

(2006, Theorem 2.3) tight bound on simple (unweighted) sums of single-period losses.

The uniform distribution of past windows used in our rule translates nicely into simple

sums of losses, whereas it is more difficult to translate the sum of exponentially weighted

losses into weighted simple sums. Another intuitive reason for a better performance

of our rule is its restriction of the number of recent periods involved in making the

next choice. The intuition brought forward in the next section is that sufficiently old

observations should simply be ignored, not even included with exponentially small

weights.

4 The Role of Adaptation

In this section we identify necessary conditions for a decision rule to have a low error

bound. We will argue that a key issue in the design of such decision rules is the

appropriate choice of the weights on past information. The error bound ε remains

bounded away from zero as δ → 1 if the decision rule adapts to new information too

fast or too slow. Too much weight on the recent past makes the rule susceptible to

noise and prevents learning which benchmark is best. Too much weight on the distant

past makes the rule sluggish and unable to track recent changes the performance of

the benchmarks, and hence of which benchmark performs best.

We consider a subclass of decision rules P described as follows. Every rule p ∈ P
chooses an action at each period t equal to the convex combination of the benchmark’s

recommendations (rt(1), ..., rt(n)),

p(ht−1, rt) =
n∑
i=1

µt(i)rt(i),

with weights (µt(1), ..., µt(n)) satisfying the following two conditions.

15



Monotonicity. For each period t and each benchmark i, weight µt(i) is weakly increas-

ing in the past performance of benchmark i, ceteris paribus. Formally, for any two

sequences of states, ω̄ and ω̄′, that differ only in the payoff of benchmark i in some

period s < t, if us(rs(i), ωs) > us(rs(i), ω
′
s), then weight µt(i) is weakly greater under

ω̄ than under ω̄′.

Anonymity. Names of benchmarks do not matter. The weights (µt(1), ..., µt(n)) are

invariant under permutation of indices (1, ..., n).

For each rule in class P we define a measure of adaptivity, that is, the degree to which

the rule adapts to new information, and then show how adaptive a rule has to be in

order to generate a low error bound. Our measure of adaptivity is defined by looking

at sequences in which each benchmark recently only generated the extreme payoffs 0

or 1. We call a rule at most k-adaptive for k ∈ N if it puts a weakly greater weight

on benchmark i whenever in the last k periods benchmark i received 1 while all other

benchmarks received 0. We call a rule k-adaptive if it is not at most k − 1 adaptive.

If no such k exists, then the decision rule is called unadaptive. Formally, we say that

a decision rule p ∈ P is k-adaptive if k is the smallest integer that satisfies for each

period t ≥ k + 1,

if u(rs(i), ωs) = 1 and u(rs(j), ωs) = 0 for all j 6= i and all s ∈ {t− k, ..., t− 1}

then µt(i) ≥ µt(j) for all j 6= i.

Obviously, every monotonic and anonymous decision rule with weights that depend only

the recent m periods is at most m-adaptive. This applies to our decision rule p(m,η)

defined in the previous section, as well as Lehrer and Solan’s (2009) rule with periodic

restarts and Zapechelnyuk’s (2008) rule with a bounded recall window. The decision

rule with exponentially decaying weights (7) is k-adaptive, where k is the median of

the exponential distribution, the smallest integer satisfying
∑k

s=1 α
s ≥

∑∞
s=k+1 α

s. The

exponentially weighted average forecaster rule (5), as well as any rule based on the sum

or simple average of all past payoffs, is unadaptive.

Theorem 2. Every k-adaptive decision rule in P has error bound

ε ≥ max

{
1

2(k+1) log(k+1)
,
1− δk−1

2

}
.
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Every unadaptive decision rule in P has error bound ε ≥ 1
2
.

The proof is in Appendix A.

Theorem 2 shows that a decision rule whose error bound approaches 0 as δ tends to 1

must necessarily be increasingly adaptive w.r.t. δ, but not too adaptive. The adaptivity

parameter k = k(δ) must diverge as δ → 1, but it must grow slower than (ln δ)−1, so

that both bounds, 1
2(k+1) log(k+1) and 1−δk−1

2
, approach zero.

In particular, we uncover a discontinuity at δ = 1. The unadaptive strategies used in

the literature on no-regret and decision making with expert advice that are known to

perform well for an infinitely patient decision maker, such as Littlestone and Warmuth’s

(1994) exponentially weighted average forecaster rule, Hart and Mas-Colell’s (2000)

regret matching, lp-norm strategies of Hart and Mas-Colell (2001) and Cesa-Bianchi

and Lugosi (2003), as well as the smooth fictitious play (Fudenberg and Levine, 1995),

perform very badly when δ is less than, but arbitrarily close to 1.

To obtain these lower bounds, we test a rule against specific environments. First

we explain what can go wrong if too little weight is given on the distant past. The

corresponding bound is ε ≥ 1
2(k+1) log(k+1) . We obtain this bound by testing a rule in an

i.i.d. environment and evaluating its performance in expectation. Note that any bound

on the expected performance is also a lower bound on the realized performance. When

a rule is k-adaptive, then unlikely sequences of events will be too influential on the

decisions and can steer the rule away the best benchmark.

Consider the following example. There are two possible states of the environment, Rain

and Sun. In each period the decision maker is asked to forecast the likelihood of Rain,

denoted by a. If Rain occurs she receives payoff a, if Sun occurs she receives payoff

1−a. There are two constant benchmarks: one always forecasts Rain, the other always

forecasts Sun. Suppose that states Rain and Sun occur with probability 1− σ and σ,

respectively, independently in every period, σ > 1/2. After k consecutive periods of

Rain a k-adaptive rule will assign the weight at least 1/2 on Rain. The event that such

a sequence occurs has a probability exponentially decreasing in k. Yet, this probability

is strictly positive, thus preventing the decision maker from forecasting Sun, which is

the best benchmark in expectation.

Next, we argue what can go wrong if too much weight is given on distant past. The

correspondent bound is ε ≥ 1−δk−1

2
for a k-adaptive rule and ε ≥ 1

2
for an unadaptive
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rule. We explain the intuition by illustrating what can happen with an unadaptive rule

that equally weighs all past information. If some benchmark that has been the best

for a long time becomes inferior, then it may take a very long time for the decision

maker to adjust the weights towards different benchmarks. The longer the history, the

longer it will take to adapt to changes. No matter how patient the decision maker is,

she risks to get stuck with a wrong benchmark for an arbitrarily long period of time.

Thus, the problem of dynamic consistency arises. After some time and some histories

the decision maker will prefer to “forget” the past and to restart her decision rule from

the empty history.

For illustration, let us consider the payoffs of the previous example. We now consider

sequences of states and evaluate realized payoffs. Assume that Sun occurs in the first

T periods and Rain occurs ever after. Then, in every period t = T + 1, . . . , 2T , the

decision maker will assign a weight at most 1/2 on Rain, even though Rain occurs in

each of these periods. The payoffs in periods T + 1 to 2T are thus at most 1/2, far

from the best. So, for any given discount factor δ < 1 and a sufficiently large T , the

decision rule’s performance evaluated at period T + 1 is substantially worse than that

of the best benchmark (in this example, the constant benchmark that forecasts Rain).

5 Extensions

Within our methodology we can allow for certain extensions of our model.

Non-convex and finite action sets. We show why our results extend to a more

general setting where the set of actions, A, need not be convex and payoff function

u(a, ω) need not be concave in a. The model where there are only finitely many

different actions is a special case. The challenge that we face here is that for a given

vector of benchmarks’ actions, (rt(1), ..., rt(n)), the decision rule p(m,η) stipulates to

choose an action at equal to some linear combination of (rt(1), ..., rt(n)). But at may

not belong to A, since the latter need not be convex. As in Hannan (1957) or Hart and

Mas-Colell (2001), we deal with this problem by letting the decision maker play a mixed

strategy, a lottery over benchmark recommendations, which themselves are elements

of A by definition. Accordingly, the decision maker follows the recommendation of

benchmark i with probability equal to the weight λt(i) assigned on this benchmark in
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each period t. All our results then hold in expectation w.r.t. the decision maker’s own

mixed strategy.

The multi-armed bandit setting. Consider learning under partial information

where the decision maker observes only payoffs from chosen actions. Payoffs of the

benchmarks whose actions have not been adopted are not observed. Here we explain

how to extend our algorithm to derive the result analogous to Theorem 1.

Since the foregone payoffs are not observed, we use the trick of Auer et al. (1995)

to construct their unbiased estimates. Define the estimate ût(i) of a payoff of each

benchmark i in every period t as u(at, ωt)/rt(i) if benchmark i’s action is chosen by

the decision maker in period t, and ût(i) = 0 otherwise. Then, in each period with

probability 1 − ν use our decision rule p(m,η) w.r.t. the estimated past performances

of the benchmarks, and with probability ν follow the action of a random benchmark,

choosing each benchmark equally likely. These adjustments can be easily accounted

for in our proofs to yield a result as in Theorem 1, the existence of a simple decision

rule for dynamic benchmark targeting. Note that each benchmark is followed with

probability greater or equal to ν, hence all estimates are bounded from above by 1/ν.

The parameter ν > 0 is called the rate of experimentation, its value can be fine-tuned

for the best performance. Naturally, the new error bound will be greater, as now the

decision maker conditions her decisions on much less information.

Decision makers with bounded horizon. Suppose that a decision maker does not

discount future payoffs, but instead is concerned in each period t with average payoffs

over t+1, . . . , t+T for a fixed horizon T . Here the same simple rule can be used. Some

work is needed to derive a new error bound and then to choose the free parameters m

and η that minimize this bound.

We hasten to point out that if a decision maker faces a finitely repeated decision

problem in periods t = 1, 2, . . . , T , then dynamic benchmark targeting strategies with

error bound ε < 1/2 fail to exist, regardless of how past information is used. The

intuition is simple. After facing T − 1 periods, the decision maker is only concerned

with her payoff in the final period T . However, the state of the environment in the

last period need not depend on the past realizations. Thus, the decision maker can

guarantee only the maxmin payoff, in our Rain & Sun example in Section 4 this is 1/2,

while the payoff of the best benchmark in the final round is equal to 1.
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6 Conclusion

In this paper we introduce a methodology for dynamic decision making in which at

each point in time the decision maker compares own performance to a given set of

benchmark algorithms, such as rules of thumb and heuristics. We present a decision

rule that guarantees to perform, in terms of discounted present values, nearly as well

as or better than each of these benchmarks at any point in time. Using our rule,

the decision maker need not model the environment, as she would under the Bayesian

paradigm, and hence does not use complicated optimization routines and need not be

worried about misspecifying the environment. Choices are time consistent, hence if the

best benchmark changes, then the decision maker will track this change. This makes

our methodology different from the existing literature on decision making with expert

advice, which limits attention to decision makers who are able to commit to a rule from

the start and to never be able to change the rule in the future. We feel that dynamic

decision making together with uncertain and changing environments warrants flexible

behavior. We implemented this flexibility into the literature literature on decision

making with expert advice, following the spirit that led to the introduction of subgame

perfection to game theory and brought on the Nobel prize to Reinhard Selten.

Within our introduced methodology the notion of optimality is well defined, as we

search for a decision rule with the smallest error bound. Whether or not the rule

presented in this paper is (close to being) optimal is the matter of future research. The

natural first step in this direction is to establish a lower bound on the error bound of

any rule.

Notice that the error bound of our rule has been derived for the worst case and depends

only on the number of benchmarks, but not their properties. For a specific choice of

benchmarks and for a specific environment the error bound can be much lower. How

much lower it will be depends on the additional assumptions. This question is left for

future research.

A separate question that this paper does not address is the choice of benchmarks. An

additional benchmark can substantially improve performance if it turns out to per-

form much better than the others in the given environment. At the same time, adding

a benchmark potentially increases the error bound, as it is more difficult to outper-

form more benchmarks. So the decision maker has the tradeoff between a potentially
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higher absolute performance and a potentially larger gap in performance to the best

benchmark. This is another avenue for future research.

Appendix A. Proofs

A.1 Proof of Theorem 1

Proof. Consider the rule p(m,η) with given parameters m ∈ N and η > 0. Recall that

Ct,0(i) = 0, Ct,k(i) =
∑t−1

s=t−k u(as(i), ωs) for k ≥ 1, and λt,k(i) = e
ηCt,k(i)∑n

j=1 e
ηCt,k(j)

. The

values for t − k ≤ 0 are well defined by the convention that all payoffs in nonpositive

rounds are zero. The actions of the rule p(m,η) for all t ∈ N are

at = p(m,η)(ht−1, rt) =
n∑
i=1

(
1

m

m−1∑
k=0

λt,k(i)

)
rt(i).

Fix a benchmark i ∈ {1, ..., n}, a sequence of states ω̄, and a round t0. We now bound

the loss from not following that benchmark, Ut0(rt(i), ω̄)− Ut0(at, ω̄).

For every k = 0, 1, ...,m − 1 define the rule that combines the benchmarks based on

their performance in the recent k periods,

bt,k =
n∑
j=1

λt,k(j)rt(j).

Note that for k = 0 the past is ignored and the weights are assigned uniformly to all

benchmarks, λt,0(j) = 1
n
, j = 1, ..., n.

By concavity of u(a, ω) in a and Jensen’s inequality we have

u(at, ωt) ≥
1

m

m−1∑
k=0

u(bt,k, ωt). (9)

For each k = 0, 1, ...,m−1 denote by Dt,t+k(i) the loss from not following the action of

benchmark i in round t+k when using the rule bt+k,k based on the recent observations

over rounds in {t, t+ 1, ..., t+ k − 1},

Dt,t+k(i) = u(rt+k(i), ωt+k)− u(bt+k,k, ωt+k).
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We now derive a bound on the sum
∑m−1

k=s Dt,t+k(i) using the technique of Cesa-Bianchi

and Lugosi (2006, Theorem 2.2) based on Hoeffding inequality (Hoeffding, 1963).

Lemma 1.

m−1∑
k=s

Dt,t+k(i) ≤ T (s,m) := min

{
m− s, lnn

η
+ s+

η

8
(m− s)

}
.

Proof. Since Dt,t+k(i) ≤ 1, we obtain
∑m−1

k=s Dt,t+k(i) ≤ m − s. For the second bound

we generalize Theorem 2.2 of Cesa-Bianchi and Lugosi (2006). For i ∈ {1, ..., n} let

ws (i) = e−η
∑s−1
k=0Dt,t+k(i)

and let Ws =
∑n

i=1ws(i). Note that e−ηs ≤ ws(i) ≤ 1 for all s and all i, so Ws ≤ n.

Thus, for every i ∈ {1, ..., n} we have

ln
Wm

Ws

= ln

(
n∑
j=1

ws(j)e
−η

∑m−1
k=s Dt,t+k(j)

)
− lnWs ≥ ln

(
ws(i)e

−η
∑m−1
k=s Dt,t+k(i)

)
− lnn

= lnws(i)− η
m−1∑
k=s

Dt,t+k(i)− lnn ≥ −ηs− η
m−1∑
k=s

Dt,t+k(i)− lnn.

Using the following inequality (Cesa-Bianchi and Lugosi, 2006, p. 17)

ln
Wm

Ws

≤ η2

8
(m− s) ,

we obtain
m−1∑
k=s

Dt,t+k(i) ≤
lnn

η
+ s+

η

8
(m− s) .

Next, by (9) we have

Ut0(rt(i), ω̄)− Ut0(at, ω̄) = (1− δ)
∞∑
t=t0

δt−t0(u(rt(i), ωt)− u(at, ωt)

≤ ∆ := (1− δ)
∞∑
t=t0

δt−t0
1

m

m−1∑
k=0

Dt−k,t(i).
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We can rewrite ∆ as follows,

∆ =
1− δ
m

t0−1∑
t=t0−m+1

δt−t0
m−1∑
s=t0−t

δsDt,t+s(i) +
1− δ
m

∞∑
t=t0

δt−t0
m−1∑
s=0

δsDt,t+s(i). (10)

Let us bound the second term in the right-hand side of (10). By Lemma 1,

m−1∑
l=0

Dt,t+l(i) ≤
lnn

η
+
ηm

8
.

Thus we have

m−1∑
s=0

δsDt,t+s(i) = (1− δ)
m−2∑
s=0

δs
s−1∑
l=0

Dt,t+l(i) + δm−1
m−1∑
l=0

Dt,t+l(i)

≤ (1− δ)
m−2∑
s=0

δs
(

lnn

η
+
ηs

8

)
+ δm−1

(
lnn

η
+
ηm

8

)
=

lnn

η
+

η

8(1− δ)
(1− δm). (11)

Next, let us deal with the first term in the right-hand side of (10). By Lemma 1,

m−1∑
l=k

Dt,t+l(i) ≤ T (k,m).

For t ∈ {t0−m+ 1, ..., t0−1} set k = t0− t−1. Observe that 0 ≤ k ≤ m−2. We have

δt−t0
m−1∑
s=t0−t

δsDt,t+s(i) = (1− δ)
m−2∑
s=k

δs−k
s−1∑
l=k

Dt,t+l(i) + δm−1−k
m−1∑
l=k

Dt,t+l(i)

≤ (1− δ)
m−2∑
s=k

δs−kT (k, s) + δm−1−kT (k,m). (12)
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By (11) and (12) we obtain

∆ ≤Φ(m,η) :=
1− δ
m

m−2∑
k=0

(
(1− δ)

m−2∑
s=k

δs−kT (k, s) + δm−1−kT (k,m)

)

+
1

m

(
lnn

η
+

η

8(1− δ)
(1− δm)

)
. (13)

Since Ut0(rt(i), ω̄) − Ut0(at, ω̄) ≤ Φ(m,η) for all benchmarks i, all rounds t0, and all

sequences of states ω̄, the term Φ(m,η) is an error bound for rule p(m,η).

Next, we make the error bound Φ(m,η) small by choosing the free parameters m and η.

The values that approximately minimize Φ(m,η) are

η∗ = 2
4
3 (lnn)

1
3 (1− δ)

1
3 and m∗ =

η∗

2(1− δ)
+ x. (14)

where x ∈ (−1, 1] is the adjustment such that m is an even integer. For the proof we

do not need to show how these optimal parameters are derived, we only need to prove

that Φ(m∗,η∗) has the stated error bound,

Φ(m∗,η∗) ≤
3

4

(
2(1− δ) lnn

) 1
3 +

7

96

(
2(1− δ) lnn

) 2
3 . (15)

In order to deal with the inconvenient, nondifferentiable term T (k, s) in (13), we use

T (k, s) = min

{
s− k, lnn

η∗
+
η∗s

8

}
≤ T̃ (k, s) :=

s− k, k ≤ m∗

2
,

lnn
η

+ ηs
8
, k > m∗

2
.

The summations then split into two differentiable parts,

m∗−2∑
s=k

δs−kT (k, s) ≤
m∗−2∑
s=k

δs−kT̃ (k, s) =

m∗/2∑
s=k

δs−k(s− k) +
m∗−2∑
s=m∗/2

δs−k
(

lnn

η∗
+
η∗s

8

)
.

Replacing T by T̃ in the right-hand side of (13) yields a differentiable expression. Using

the Taylor expansion of this expression w.r.t. (1− δ) up to the third term yields (15),

where the third term of the expansion is nonpositive and bounded by zero.
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A.2 Proof of Theorem 2

The theorem is proved by example. Consider two states 0 and 1, set of actions A =

[0, 1], and payoffs given by u (a, ω) = 1− |a−ω|, a ∈ A = [0, 1], ω ∈ Ω = {0, 1}. There

are two benchmarks, labeled 0 and 1, that recommend the respective extreme constant

actions, rt(0) = 0 and rt(1) = 1 for all t.

To prove that the error bound of a k-adaptive decision rule satisfies ε ≥ 1
2(k+1) log(k+1) , we

consider an i.i.d. environment and compare the expected performance of the benchmark

and a given decision rule. Note that a lower bound on the difference in the expected

performance is also a lower bound on the realized performance, for some sequence of

realized events.

the following environment. The state equals 0 and 1 with probability 1 − σ and σ,

respectively, independently in all periods, σ ∈ (1
2
, 1). In this setting, benchmark 1 is

the better of the two as it is correct with probability σ > 1
2

in every period and yields

the expected payoff E[u(1, ω)] = σ.

For each period t > k let Et be the event that ωt−s = 0 for every s = 1, . . . , k. Since

we have assumed u (a, ω) = 1 − |a − ω|, under event Et we have u(0, ωt−s) = 1 and

u(1, ωt−s) = 0 for each s = 1, . . . , k, and hence µt(0) ≥ µt(1) by k-adaptivity. The

expected payoff of the decision maker conditional on Et is

E[u(p, ωt)|Et] = σ(µt(1) · 1 + µt(0) · 0) + (1− σ)(µt(1) · 0 + µt(0) · 1)

= σ − µt(0)(2σ − 1) ≤ σ − 1
2
(2σ − 1) = 1

2
,

where we used µt(0) + µt(1) = 1 and µt(0) ≥ µt(1). Since Pr[Et] = (1 − σ)k and the

upper bound on the expected stage payoff is σ, it follows that

E[u(p, ωt)] = E[u(p, ωt)|Et] Pr[Et] + E[u(p, ωt)|not Et](1− Pr[Et])

≤ 1
2

Pr[Et] + σ(1− Pr[Et]) = σ − (σ − 1
2
) Pr[Et] = σ − 2σ−1

2
(1− σ)k.

As the expected payoff of benchmark 1 is σ, the difference is

E[u(1, ωt)− u(p, ωt)] ≥ 2σ−1
2

(1− σ)k.
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Since the choice of σ is arbitrary, maximizing the right-hand side w.r.t. σ ∈ [1
2
, 1] yields

max
σ∈[ 1

2
,1]

2σ−1
2

(1− σ)k =

(
k

k + 1

)k
1

2k(k + 1)
≥ 1

2(k+1) log(k+1)
.

Since the state is i.i.d., the expected discounted sum of future payoffs for the deci-

sion maker in every period t > k is also less than benchmark 1’s payoff by at least
1

2(k+1) log(k+1) , independently of the discount factor. It is immediate that the same state-

ment is true for some realized path of the events. Consequently, the error bound

satisfies

ε ≥ 1

2(k+1) log(k+1)
.

Next, to prove that the error bound of a k-adaptive decision rule satisfies ε ≥ 1−δk−1

2
,

consider the following environment. Let T be an integer and consider the sequence of

states ω̄ where ωt = 1 for all t ≥ T .

Then, for every period t = T, T + 1, ..., T + k − 2, in the recent t − T < k periods

benchmark 1 has payoff one and benchmark 0 has payoff zero. Hence, by k-adaptivity,

there exists a large enough T and a history of states preceding T such that µt(1) <

µt(0). Moreover, by monotonicity, this history is such that ωs = 0 for all s < T , so

that benchmark 1 is worst and benchmark 0 is best in all periods before T . Under this

history,

µt(1) < µt(0) for all t = T, T + 1, ..., T + k − 2. (16)

Thus,

UT (p, ω̄) < (1− δ)
k−2∑
s=0

δs(0 · 1
2

+ 1 · 1
2
) + δk−1UT+k−1(p, ω̄) ≤ 1

2
(1− δk−1) + δk−1.

The discounted sum of payoffs of benchmark 1 in period T is UT (p1, ω̄) = 1, since in

all periods from T on benchmark 1’s payoff is constantly one. Hence the error bound

must satisfy

ε ≥ UT (p1, ω̄)− UT (p, ω̄) ≥ 1− 1

2
(1− δk−1)− δk−1 =

1

2
(1− δk−1).

Finally, we prove that the error bound of an unadaptive decision rule satisfies ε ≥ 1
2
.
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Within the same environment considered above, if a decision rule is unadaptive, then

for every k there exists T = T (k) such that (16) holds, and hence

ε ≥ UT (k)(p1, ω̄)− UT (k)(p, ω̄) ≥ 1

2
(1− δk−1).

Since the error bound must satisfy the above for all periods, we have

ε ≥ sup
k∈N

{
1

2
(1− δk−1)

}
=

1

2
.

Appendix B. Proofs (Online Appendix)

B.1 Proof of Proposition 1

Consider a rule q̄(m,η) for some parameters m ∈ N and η > 0, and fix a sequence of

states ω̄.

Define Zt(i) = u(rt(i), ωt) − u(at, ωt) for every i = 1, . . . , n and every t. We shall

also simplify notations for the sum of the future discounted payoffs, writing Ut0(0) for

Ut0(q̄(m,η), ω̄) and Ut0(i) for Ut0(pi, ω̄).

Fix a benchmark i and consider the starting period t0 just after the restart, so t0 = mk0

for some integer k0. We have

J(i) = Ut0(i)− Ut0(0) = (1− δ)
∞∑

t=mk0

δ(t−mk0)Zt(i) = (1− δ)
∞∑

k=k0

δm(k−k0)
m−1∑
s=0

δsZmk+s(i)

= (1− δ)
∞∑

k=k0

δm(k−k0)

(
m−1∑
s=0

(δs − δm−1)Zmk+s(i) +
m−1∑
s=0

δm−1Zmk+s(i)

)
.

Now, since |Zt(i)| ≤ 1,

m−1∑
s=0

(δs − δm−1)Zmk+s(i) ≤
m−1∑
s=0

(δs − δm−1) =
1− δm

1− δ
−mδm−1.
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Also, by Theorem 2.2 in Cesa-Bianchi and Lugosi (2006),

m−1∑
s=0

Zmk+s(i) ≤
lnn

η
+
mη

8
≤
√
m lnn

2
,

where we choose η =
√

(8 lnn)/m. Hence,

J(i) ≤ (1− δ)
∞∑

k=k0

δm(k−k0)

(
1− δm

1− δ
−mδm−1 + δm−1

√
m lnn

2

)

=
1− δ

1− δm

(
1− δm

1− δ
−mδm−1 + δm−1

√
m lnn

2

)

= 1− 1− δ
1− δm

δm−1

(
m−

√
m lnn

2

)
.

Next, consider any t0 and denote by z ∈ {0, 1, ...,m − 1} the number of periods that

remain until the next restart, so the integer t0 + z is a multiple of m. Using |Zt(i)| ≤ 1

and that the sum from the period of restart on is J(i), we have

Ut0(i)− Ut0(0) = (1− δ)
t0+z−1∑
t=t0

δt−t0Zt(i) + (1− δ)δz
∞∑

t=t0+z

δt−t0Zt(i)

= (1− δ)
t0+z−1∑
t=t0

δt−t0 + δzJ(i) = 1− δz + δzJ(i).

Since J(i) ≤ 1, this expression is increasing in z, so the worst case is z = m − 1.

Substituting the bound for J(i), we have

Ut0(i)− Ut0(0) ≤ 1− δm−1 + δm−1

(
1− 1− δ

1− δm
δm−1

(
m−

√
m lnn

2

))

= 1− δ2(m−1) 1− δ
1− δm

(
m−

√
m lnn

2

)
.

Substituting m = m(δ) = c/(1−δ)2/3 with a parameter c > 0 into the above expression,

using Taylor expansion up to the second term and upper-bounding that term by zero
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yields

Ut0(i)− Ut0(0) ≤

(
3

2
c+

1√
c

√
lnn

2

)
(1− δ)1/3.

Choosing c to minimize the leading constant, c = 2−1/33−2/3(lnn)1/3, yields

Ut0(i)− Ut0(0) ≤
(
3
2

)4/3
(lnn)1/3(1− δ)1/3.

Since the above holds for each benchmark i and for each starting period t0, the state-

ment of the proposition follows immediately.

B.2 Proof of Proposition 2

Consider a rule q̃(α,η) for some parameters α ∈ (0, 1) and η > 0. Fix a sequence of

states ω̄ and a round t0.

Define Xt(0) = u(at, ωt) and Xt(i) = u(rt(i), ωt) for every i = 1, . . . , n and every t. In

these notations, the performance of every benchmark i = 0, 1, . . . , n is evaluated by

Cα,t(i) = Xt(i) + αCα,t−1(i), t ≥ 1,

with Cα,0(i) = 0. We shall also simplify notations for the sum of the future discounted

payoffs, writing Ut0(0) for Ut0(q̃(α,η), ω̄) and Ut0(i) for Ut0(pi, ω̄).

To begin with, let us show that

Ut0(i)− Ut0(0) ≤ α
1− δ
1− α

+
(1− δα)η

8α(1− α)
+

1− δα
η

lnn. (17)

Let wt(i) = eηCα,t−1(i), so w1(i) = 1 and

wt+1(i) = wαt (i)eηXt−1(i), t ≥ 2 .

Also, let Wt =
∑n

j=1wt(j) and vt(i) = wt(i)
Wt

for all i = 1, . . . , n and all t ≥ 1. Note that

decision rule q̃(α,η) stipulates to play in every period t the weighted average of the bench-

marks’ recommended actions, with weight vt(i) assigned to the action recommended
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by benchmark i = 1 . . . , n,

at =
n∑
i=1

vt(i)rt(i).

By concavity of u(a, ω) in a and Jensen’s inequality,

Xt(0) ≥
n∑
j=1

vt(j)Xt(j). (18)

First, we find a bound on Xt(0). Using Jensen’s inequality again, we obtain

ln
Wt+1

Wα
t

= ln
n∑
j=1

wt+1(j)

Wα
t

= ln
n∑
j=1

wαt (j)

Wα
t

eηXt(j) = ln
n∑
j=1

vαt (j)eηXt(j)

= ln

[(
n∑
j=1

vαt (j)
eηXt(j)∑n
k=1 e

ηXt(k)

)(
n∑
k=1

eηXt(k)

)]

≤ ln

[(
n∑
j=1

vt(j)
eηXt(j)∑n
k=1 e

ηXt(k)

)α( n∑
k=1

eηXt(k)

)]

= α ln
n∑
j=1

vt(j)e
ηXt(j) + (1− α) ln

n∑
j=1

eηXt(j)

= α ln
n∑
j=1

vt(j)e
ηXt(j) + (1− α) ln

(
1

n

n∑
j=1

eηXt(j)

)
+ (1− α) lnn.

We will need the following generalization of the Hoeffding inequality.

Lemma 2 (Cesa-Bianchi and Lugosi 2006, Lemma 2.2). Let Z be a random variable

with a ≤ Z ≤ b. Then for every s ∈ R,

lnE
[
esZ
]
≤ sEZ +

s2(b− a)2

8
.

By Lemma 2, inequality (18) and the assumption that Xt(j) ∈ [0, 1],

ln
n∑
j=1

vt(j)e
ηXt(j) ≤ η

n∑
j=1

vt(j)Xt(j) +
η2

8
≤ ηXt(0) +

η2

8
.
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Again, by Lemma 2,

ln

(
1

n

n∑
j=1

eηXt(j)

)
≤ η

n

n∑
j=1

Xt(j) +
η2

8
= ηθt +

η2

8
,

where θt = 1
n

∑n
j=1Xt(j). Consequently,

ln
Wt+1

Wα
t

≤ αηXt(0) + (1− α)ηθt +
η2

8
+ (1− α) lnn.

Thus, we have derived

Xt(0) ≥ 1

αη
ln
Wt+1

Wα
t

− 1− α
α

θt −
η

8α
− 1− α

αη
lnn. (19)

Second, we find a bound on

Cα,t(0) =
t∑

k=1

αt−kXk(0).

Following (19),

Cα,t(0) ≥ 1

αη

(
ln
Wt+1

Wα
t

+ α ln
Wt

Wα
t−1

+ . . .+ αt−1 ln
W2

Wα
1

)
− 1− α

α

t∑
k=1

αt−kθt −
(
η

8α
+

1− α
αη

lnn

) t∑
k=1

αt−k

=
1

αη
ln
Wt+1

Wα
t

Wα
t

Wα2

t−1
. . .

Wαt−1

2

Wαt
1

− 1− α
α

t∑
k=1

αt−kθt −
(
η

8α
+

1− α
αη

lnn

)
1− αt

1− α

=
1

αη
ln
Wt+1

Wαt
1

− 1− α
α

t∑
k=1

αt−kθt −
η

8α

1− αt

1− α
− 1− αt

αη
lnn

=
1

αη
lnWt+1 −

1− α
α

t∑
k=1

αt−kθt −
η

8α

1− αt

1− α
− lnn

αη
,

where we used W1 =
∑n

j=1w1(j) = n, so lnWαt

1 = αt lnn.
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Fix any j = 1, . . . , n. Using Wt+1 =
∑

k wt+1(k) ≥ wt+1(j) = eηCt(j), we obtain

Cα,t(0) ≥ 1

η
lnWt+1 +

1− α
αη

lnWt+1 −
1− α
α

t∑
k=1

αt−kθt −
η

8α

1− αt

1− α
− 1

αη
lnn

≥ Cα,t(j) +
1− α
αη

(
lnWt+1 − η

t∑
k=1

αt−kθt

)
− η

8α

1

1− α
− 1

αη
lnn.

Observe that

lnWt+1 − η
t∑

k=1

αt−k ln θt = ln
n∑
j=1

eη
∑t
k=1 α

t−kXk(j) −
t∑

k=1

αt−k
1

n

n∑
j=1

Xk(j)

= lnn+ ln

(
1

n

n∑
j=1

ey(j)

)
− 1

n

n∑
j=1

y(j),

where y(j) = η
∑t

k=1 α
t−kXk(j). By Jensen’s inequality,

1

n

n∑
j=1

ey(j) ≥ e
1
n

∑n
j=1 y(j),

and hence

lnWt+1 − η
t∑

k=1

αt−k ln θt ≥ lnn+ ln
(
e

1
n

∑n
j=1 y(j)

)
− 1

n

n∑
j=1

y(j) = lnn.

Consequently,

Cα,t(0) ≥ Cα,t(j) +
1− α
αη

lnn− η

8α(1− α)
− 1

αη
lnn

= Cα,t(j)−
η

8α(1− α)
− lnn

η
. (20)
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Finally, we bound Ut0(0). We evaluate for j ∈ {0, 1, .., n} ,

(1− δ)
∞∑
t=t0

δt−t0Cα,t(j) = (1− δ)
∞∑
t=t0

δt−t0
t∑

k=1

αt−kXk(j)

= (1− δ)

(
(αt0−1 + δαt0 + δ2αt0+1 + ...)X1(j) + (αt0−2 + δαt0−1 + ...)X2(j)

+..+ (1 + δα + ...)Xt0(j) + (δ + δ2α + ...)Xt0+1(j)...

)

= (1− δ)

(
αt0−1 (1 + δα + δ2α2 + ...)X1(j) + αt0−2 (1 + δα + ...)X2(j)

+..+ (1 + δα + ...)Xt0(j) + δ (1 + δα + ...)Xt0+1(j) + ...

)

= (1− δ) 1

1− δα

∞∑
t=t0

δt−t0Xt(j) + (1− δ) 1

1− δα

t0−1∑
k=1

αt0−kXk(j)

=
1

1− δα
Uδ,t0(j) +

1− δ
1− δα

t0−1∑
k=1

αt0−kXk(j).

Using (20) we obtain

Ut0(j)− Ut0(0)

1− δ
= (1− δα)

∞∑
t=t0

δt−t0 [Cα,t(j)− Cα,t(0)]−
t0−1∑
k=1

αt0−k [Xk(j)−Xk(0)]

≤ 1− δα
1− δ

(
η

8α(1− α)
+

lnn

η

)
+

t0−1∑
k=1

αt0−k

=
1− δα
1− δ

(
η

8α(1− α)
+

lnn

η

)
+ α

1− δ
1− α

,

which completes the proof of (17).

Next, choose α and η that satisfy

1− α
α

=
2 (1− δ)2/3

(lnn)1/3

and η = 2
√

2α (1− α) lnn. Substituting the above η and α into the right-hand side of

(17) and using Taylor expansion up to the third term yields

Ut0(i)− Ut0(0) ≤ 3

2
((1− δ) lnn)

1
3 +

1

2
((1− δ) lnn)

2
3 .

The third term of the expansion is nonpositive and bounded by zero. Since the above
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holds for each benchmark i and for each starting period t0, the statement of the propo-

sition follows immediately.
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