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Abstract

Many negotiations (for instance, among political parties or

partners in a business) are characterised by dynamic bargain-

ing: current agreements affect future bargaining possibilities. We

study such situations using bargaining games á la Rubinstein

(1982), with the novelty that players can decide how much to

invest, as well as how to share the residual surplus for their own

consumption. We show that under certain conditions, there is a

unique (stationary) Markov Perfect Equilibrium characterised by

immediate agreement. Moreover, standard results in bargaining

theory can be overturned. For instance, despite the complexity of

the bargaining game, there are equilibrium strategies as in an ul-

timatum, where the responder does not consume anything. Also,

a more patient proposer may consumes less than his opponent.

Additionally, a higher discount factor for one player may decrease

the MPE investment rates for both players. We study the effect

of different rates of time preferences, intertemporal elasticities of

substitution and rates of return on the equilibrium demands.
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1 Introduction

Several bargaining situations in the most diverse contexts can be rep-

resented as bargaining games with dynamic accumulation, that is, bar-

gaining games in which parties can invest part of a surplus and the

invested surplus, in turn, affects the size of future surpluses. For in-

stance, partners in a business need to negotiate not only over how to

split profits among themselves, but also over how much profit should be

re-invested for the following production period. Countries may attempt

to find agreements over environmental issues by taking into account the

fact that current decisions can affect the state of the environment and

therefore future bargaining possibilities.

Bargaining games which allow parties to make both investment and

consumption decisions a sequential number of times are almost unex-

plored (a discussion of the related literature is in the next section). We

study a bargaining model á la Rubinstein (1982), where two (risk-averse)

players attempt to agree not only on how to split a surplus for their own

consumption but also on how much to invest. The level of investment

affects the future capital stock and consequently, the surplus available

in the following bargaining stage. The problem is complex. Not only

do parties need to solve a (potentially protracted) bargaining stage, but

also a dynamic accumulation problem since the agreement they reach at

a specific stage affects future bargaining possibilities.

Our framework captures long-run relationship among parties in a

general term, since capital and investment in our model are not necessar-

ily physical. For instance, the players can be inventors in a partnership,

who need to agree not only on how to share the profit from selling a new

product/technology for their own consumption, but also on how much to

spend on advertising and/or how much to re-invest in follow-up or new

projects. Advertising and R&D expenditures are the (non-physical) in-

vestments which affect the resources available to the partners for the

future projects. The capital stock represents all the resources available

to the players for generating innovations (e.g., the knowledge acquired

from previous inventions and resources accumulated through advertising

previous products, such as clientele).

We show that in our model there is a unique stationary Markov Per-

fect Equilibrium (MPE) characterised by immediate agreement however,

different types of equilibria can arise. Haggling cannot be an equilibrium

phenomenon in our framework because delays are not strategically de-

sirable.1 A delay in reaching a current agreement implies a delay in

1Games with incomplete information are often characterised by strategic delays,

since uncertainty can be partially solved by waiting (see, e.g., Admati and Perry,
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realising not only current mutually beneficial gains but also all future

gains. Therefore, even if the current cost of a one-period delay is very

small, the total cost of a rejection can be very high for both parties. Also,

a player can always avoid a rejection by investing sufficiently. Although

the equilibrium is generally unique, there are three types of outcome

that can arise, depending on players’ characteristics, rate of return and

depreciation rate. First, when there are some frictions in the bargaining

process (i.e., both players are sufficiently impatient) and the rate of re-

turn is sufficiently high (and/or the depreciation rate is sufficiently low),

then both parties extract all the residual surplus (given the extreme con-

sumption demands, we call this the dual ultimatum-like MPE). Second,

when parties are sufficiently asymmetric, there is an hybrid version of

the ultimatum-like MPE where only one party (the most patient) ex-

tracts all the surplus not invested (while the other makes concessions).

Third, there is an (interior) MPE in which both parties leave a positive

share of the residual surplus to the opponent.

In standard bargaining games (without investment), extreme de-

mands are not typical, unless the bargaining procedure and/or players’

impatience are also extreme (for instance, in ultimatum games and/or

when players value any agreement reached in the future as badly as the

disagreement outcome). In our model, extreme demands are possible

(even in the most interesting case in which a bargaining round is shorter

than a production stage) as long as responders can be compensated

for accepting them. Compensation for accepting an extreme demand is

better than a rejection if first there are some (not necessarily extreme)

frictions in the bargaining process and the rate of return is sufficiently

high (and/or the depreciation rate is sufficiently low). Under these con-

ditions, the proposer can invest enough to be able to consume the entire

residual surplus without facing a rejection.

In our model a key role is played by an enriched discounting struc-

ture. We not only assume that players’ have (potentially) different rates

of time preference but also that in the game there are (potentially) differ-

ent time intervals across bargaining and production stages. The differen-

tial in time preferences has been known to lead to significantly different

results from the case in which players are homogeneous (see, for instance,

see Lehrer and Pauzner (1999) in the context of repeated games). The

assumption of (potentially) different time intervals captures the feature

that typically the production stage, in which the surplus is generated,

1987). Similarly for games which include some stochastic elements, as the size of the

surplus (Merlo and Wilson, 1995) or the arrival time of a future surplus (Acharya

and Ortner, 2013). For games with complete information, delay can arise when one

party bargain with two or more other parties (e.g., Cai, 2000).
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is longer than a bargaining round, that is the time to make a counter-

offer.2 Hence, one of the aims of the paper is to investigate the resulting

(complex) interplay of incentives in the game. We find that while in

bargaining theory a more patient proposer can extract a larger surplus,

in our model this is not the case (when the production stage is suffi-

ciently long). The patient party is forced to demand little to prioritise

his investment plan and avoid rejections, (which can be very costly in a

dynamic framework). Moreover, when a party becomes more patient, we

may have expected that he would invest more, instead the MPE invest-

ment rates may decrease for both players (when there are asymmetries).

Also, if a party becomes more patient, this may make a rival better off.3

1.1 Related literature

Muthoo (1999) is, as far as we know, the first paper with a focus on a

repeated (non-cooperative) bargaining game with investment decisions

in addition to the standard consumption decisions. Muthoo (1999)’s

focus is on steady-state stationary subgame perfect equilibria (while ours

is on MPE). As a result, the investment decisions are simplified since

parties need to invest as much as it is necessary so as to have surpluses

of the same size. Indeed, Muthoo’s aim is to apply Muthoo (1995),

which is a bargaining model without investment (where parties share

an infinite number of surpluses with the same size) to the accumulation

problem. In this sense, the problem of how much parties invest in a

strategic framework remains open.4

Subsequently, Flamini (2012) investigates an initial bargaining prob-

lem with dynamic accumulation with two major restrictions: the number

of bargaining stages (or accumulations problems) is finite and parame-

ters of the model assume specific values. The aim of the paper is to

develops an algorithm to define the (symmetric) subgame perfect equi-

librium and to investigate the convergence property of such an equilib-

rium when the number of bargaining stages increases. In contrast, the

current paper focuses on a general model of dynamic bargaining with

potentially an infinite number of bargaining stages and possibly asym-

metries between players (hence, one obvious complication is that it is

not possible to apply backward induction).

2A similar discounting structure has been considered first by Muthoo (1995),

which is reviewed in the next section. Flamini (2007, 2007a) study the effects of this

enriched discounting structure within an agenda formation problem.
3This is in accordance with Sorger (2006) and Houba et al. (2000), although the

economics underpinning the result is different (see footnote 19).
4Indeed, as explained in Muthoo (1999, p. 330): "The application of dynamic

capital investment... needs much further work. In particular, the analysis of the

Markov SPE of the model awaits characterization".
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There are also two main strands of literature, namely, on the hold-

up problem and on the tragedy of the commons, which are related to

the problem considered in this paper. However, there are fundamental

differences between these problems and our dynamic bargaining game

with investment. In the hold-up problem, parties have the ability to

make sunk investments that affect the size of a surplus, before bargaining

over the division of such a surplus. Since the investor, who bears all the

costs of the investment, cannot appropriate all the benefits, the resulting

investment is lower than the efficient level. Typically, only one party is

involved in the investment problem, moreover, the investment is once

and for all (see, for instance, Gibbons 1992, Muthoo 1998, Gul 2001).5

Differently, the focus of this paper is on parties who jointly and repeatedly

need to agree on how much to invest and consume.

The second strand of literature, on the tragedy of the commons,

considers different parties who can extract part of a surplus for their

own consumption and the remaining surplus will affect the size available

in the next period (see, for instance, Levhari and Mirman, 1980, Dutta

and Sandaram, 1993). The tragedy of the commons rests in the fact that

parties consume more than the efficient level and therefore the surplus

extinguishes quickly (over-exploitation of natural resources is a classic

example). Although the typical framework analysing the problem of the

tragedy of the commons is a dynamic accumulation game, it does not

include any negotiation (everyone can consume as much as he wishes,

given the stock available). Two notable exceptions, which have intro-

duced bargaining in these dynamic accumulation games are Houba et al.

(2000) and Sorger (2006). In Houba et al. (2000) parties can potentially

bargain forever (á la Rubinstein), but differently from our framework,

they need only agree once, since this agreement will be ever-lasting.

In contrast, Sorger (2006) is closer to our paper, since in each period

parties can reach an agreement over the levels of consumption (Sorger,

2006, also allows for endogenous threat points), however, the bargain-

ing process is simplified in that it is given by the maximisation of Nash

products. We consider a fully non-cooperative bargaining approach and

characterise (analytically for some cases) the strategic behaviour that

arises in equilibrium and the incentives that players need to take into

account when forming their strategies. We show that the interplay of

forces in our framework can be significant different from Sorger (2006)

and asymmetries can have important consequences in the solution of the

problem.

The paper is organised as follows. In the next section we present the

5An exception is in Che and Sákovics (2004) where parties keep investing until an

agreement has been reached, however, once this is struck, the game ends.
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model. In section 3 we analyse the MPE; first in a simple case, in which

the elasticity of substitution is equal to 2 (in section 3.1.1) then more

generally with focus on interior solutions in section 3.1.2. The case of

ultimatum-like MPE is in section 3.2. Some final remarks are made in

section 4. Most of the proofs are contained in the Appendix.

2 The Model

We consider a two-player bargaining game in which bargaining and pro-

duction stages alternate (and each stage can start only after the other has

taken place). At the production stage, a surplus is generated according

to the production function  () =  where  is the constant gross

rate of return and  is the capital stock at period  with  = 0 1 .

Production takes place in an interval of time  . Once the surplus,  (),

is generated, the bargaining stage begins and players attempt to di-

vide this surplus. The bargaining stage is a classic infinitely-repeated

alternating-offer bargaining game (Rubinstein, 1982) with the novelty

that a proposal includes an investment plan. That is, a proposal by

player  is a pair ( ), where  is the investment share proposed

by  and  is the share demanded by  over the remaining surplus.

Hence, if the proposal is accepted, the level of investment is  = 
and the consumption levels are  = (− ) for the proposer, and

 = (1−)(−) for the responder, with   = 1 2. The subscript

 indicates the dependence on capital at time , denoted by  which is

the state variable in the model. Both consumption and investment plans

( and , for player ) are linear time-invariant function of the state

variable. A discussion on this is postponed to the end of this section.

Players’ per-period utility function has a CES form6:

() =

1−


1− 
for   1 (1)

with  = 1 2 Also after an acceptance, the bargaining stage ends and

the output available at the beginning of the next bargaining stage (at

 + 1) is  (+1), which it is given by the investment level  and the

capital remaining after depreciation, +1 =  + (1 − ), where  is

the depreciation rate (0   ≤ 1).7 Regardless of whether the responder
6To simplify the exposition we focus only on the case of   1 For  > 1 it can

be shown that there are no stationary linear MPE strategies.
7Often for tractability, it is assumed maximum depreciation ( = 1) see for

instance Ljungqvist and Sargent (2000), p. 33. However, this is an unrealist assump-

tion. The analytical solutions we can obtain in our framework do not rely on the

maximum depreciation assumption.
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accepts the proposal at  he becomes the next proposer.8

If there is a rejection, a counter-offer can be made only after an

interval of time ∆. In a one-period disagreement, , parties receive

() = 0. We assume that the capital stock remains unchanged, .

Players must agree on the division of the current surplus,  (), before

proceeding to a new production stage.9

Player i ’s time preference is represented by his discount rate  (with

 = 1 2) Since intervals of time may have different lengths (∆, ), there

are two (potentially) distinct discount factors in our model: the between-

cake discount factor  = (−) which captures the friction between
bargaining stages (that is, the production time ) and the within-cake

discount factor  = (−∆) that takes into account that friction
within the bargaining stage (that is, the interval of time between a re-

jection and a new proposal, ∆). In the first period, at  = 0, a bargaining

stage starts and the surplus available is 0, by assumption.

Figure 1 represents a time line in a specific example of this game

where in the first bargaining stage, a proposal is accepted after  re-

jections, while in the second bargaining stage we assume that players

immediately agree to disinvest their capital (hence, in this particular

example the game ends after two bargaining stages).10

The focus is on (stationary) MPE, where the Markov strategies spec-

ify players’ actions for each time period  as a function of the state of

the system at the beginning of that period, . Moreover, the aim of

our analysis is to derive linear (time-invariant) strategies, that is, linear

rules describing the investment and consumption paths as linear func-

tions of the state . Often the linearity of the strategies is assumed for

tractability or it can be justified by players’ inability to elaborate more

complex rules (see e.g., Houba et al., 2000 and Sorger 2006). In addition,

8Our results are robust to different bargaining procedures. However, we need to

exclude bargaining procedures which overly simplify the strategic interactions in the

game, for instance, the case in which the successful proposer in a bargaining stage is

assumed to be the first mover in the following bargaining stage. Indeed, in this case

it can be shown that, in equilibrium, the proposer would simply demand to consume

the same share as in the Rubisteinian game.
9This is to capture the feature that many long-run relationships are based on

the engagement of the two parties. In other words, inertia (in the sense that in

disagreement the parties keep implementing the old agreement) is excluded. Also

Britz et al. (2013) assume that no production take place during disagreement in

their two-period model of the firm.
10Note that parties can disinvest their capital if they wish (  0) and, at most,

they can invest the entire surplus ( =  with  = 1 2). An alternative, but

equivalent, specification of the model would be to allow the investment to be a linear

function of the surplus (rather than the capital stock), and still allow the players to

disinvest their capital if they wish to do so.
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Muthoo (1999) and Flamini (2012) show that in their bargaining games,

the subgame perfect equilibrium strategies are linear (and stationary).

Given that Flamini (2012) contains a finite-time simplified version of our

dynamic bargaining model, this suggests that the linear strategies are a

natural candidate for our game.

3 Characterisation of the MPE Strategies

Let () (respectively, ()) be the sum of discounted payoffs to

player  as a proposer (responder) in an arbitrary MPE. Then the prob-

lem can be written in the following recursive form:

()=max{ 0
 () ()} (2)

()=max{ 0
() ()} (3)

where  0
 () and  0

() are the sums of discounted payoffs in case of

an acceptance, that is,

 0
 () = 

∈[01]
∈[−(1−)]

(  ) + (+1) (4)

s.t.  0
() ≥ () (5)

 0
() = (  ) + (+1) (6)

with per-period utility as in (1) and consumption levels given by

≡ (  ) = (− )

= (  ) = (1− )(− )

while, in case of a rejection, the sum of discounted payoffs in (2) and (3)

become

() = () and () = () (7)

with the equation of motion given by

+1 =

½
 if there is an acceptance

 otherwise
(8)

with  = +1− for   = 1 2 and  6= . The rate  in the equation

of motion, (8) indicates the gross rate of growth in the capital stock

(+1) after ’s proposal is agreed. Hence, it is given by the investment

rate, , plus the non-depreciation rate, 1 − . As a result, when net

investment  −  is zero,  = 1 while for a positive (negative) net

investment,   1 (  1). It varies between [0 ] where  = + 1− 

In the rest of the paper, to simply the notation, we often refer to MPE
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investment strategies in terms of the gross rate of growth , rather than

the investment rate 

Problem (2)-(8) is a recursive constrained problem with a complex

structure since not only does (4) have a recursive form, but the con-

straint in (5) embodies another recursive problem (via the value func-

tions  0
() and ()). Although, generally such problems cannot be

solved (see Stokey and Lucas, 1989, Ljungqvist and Sargent, 2000), we

can characterise the properties of the equilibrium outcome and we can

also obtain an analytical solution under certain conditions.

First of all, we show that in a stationary MPE, delays cannot be

sustained, however, extreme demands are possible. The intuition is that

not only is haggling never strategically profitable for a proposer, but he

can always invest an appropriate amount of surplus so that a rejection

is unprofitable for the responder. Indeed, the proposer can even demand

the entire residual surplus without facing a rejection as shown below.

Lemma 1. Assume that 
1−  1, for  = 1 2. Delays cannot be

sustained in equilibrium. Moreover, extreme demands, in which at least

a proposer consumes all the residual surplus ( = 1), can be part of an

MPE.

Proof. In Appendix.

The condition 
1−  1 is necessary for the existence of an equi-

librium (as shown the proof of Lemma 1) and will be assumed hence-

forth. Differently from the existing literature (e.g., Houba et al., 2000

and Sorger, 2006), in our framework it is possible to have extreme de-

mands ( = 1) in a stationary MPE. Moreover as shown in 3.2 these

are sustainable for realistic parameter constellations.

Following Lemma 1, we obtain that () =  0
 () and () =

 0
() for   = 1 2 Moreover, the Lagrangian is

Li(t) = ()−(()−()) (9)

where () and () are in (4) and (6),  is the (non-negative)

Kuhn-Tucker multiplier (equal to zero when the constraint is slack) and

 (and ) are the share consumed (and invested, respectively), with

  = 1 2 and  6= .

Given the linearity of the equilibrium strategies, the value functions

have the same (linear) functional form as the per-period utility function.

Therefore, we write the value functions in such a form with coefficients

which are left to be determined, we then solve the optimisation problem

and derive the correct values of such coefficients. Hence, let  (and )

be the undetermined coefficients in player ’s value functions when he
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proposes (responds respectively), that is

() ≡ 

1−


1− 
and () ≡ 


1−


1− 

Then, the optimisation problem becomes



1−


1− 
= 

∈[01]
∈[−(1−)]

(  ) + 

1−
+1

1− 
(10)

s.t.  >  with (11)



1−


1− 
= (  ) + 


1−
+1

1− 
(12)

+1 =  (13)

with  =  + 1−    = 1 2 and  6= 

3.1 Interior MPE

To solve the optimisation problem (10)-(13), first, we express the controls

and subsequently the payoff coefficients in terms of auxiliary variables

 and Kuhn-Tucker multipliers , with  = 1 2. Then, we derive

the equilibrium conditions to solve for  and , using a fixed point

argument. Let11

 =

⎧⎨⎩( )|   0 0 

"


Ã
1− (1 +

1
 )



!#1−
 min

µ





1



¶
for   = 1 2  6= }

The first order conditions of (9) with respect of  and  are respectively

=
1

1 +
1


(14)

=
( +)

1− (1 +
1
 )(1− )

( +)
1 + 1 +

1


(15)

If there is an interior solution, it must be that   0 and the constraint

(11) holds as an equality,  =  for any   = 1 2 and  6=  By the

complementary slackness condition, if the constraint (11) is not binding,

instead, the multiplier  is zero. The cases of  = 0 (with  = 1 or 2

or both) hold under certain conditions and are considered in section 3.2.

11A pair ( ), with  = 1 2 in characterise a real and positive MPE proposal.

Moreover the transversality condition is satisfied.

10



Using (14) and (15), the Bellman equation (10) can be re-written as

 = 1−
1 + 

(1−)



1−


(16)

where

= + (17)

= 
1
 + 1 +

1
 (18)

while equation (12) becomes

 = 1−


1−


 + 
(1−)



1−


Using the constraint = the coefficients  can be written as in

 =
1−


1−
 − 1−

1−




and  =
1−

1−





1−
  − 1−

1−




(19)

with   = 1 2 with  6=  This implies that, the indifference condi-

tion = can be written as in (21), while from the definition of the

auxiliary variable, that is,

 = ( +)
1 + 1 +

1


we obtain the following:

 = 1−

⎛⎝ 
1−





1−
  − 1−

1−




+



1−
 − 1−

1−




⎞⎠ (20)


1−





1−
  − 1−

1−




=
1


1−
 − 1−

1−




(21)

where  =
³
 − (1 +

1
 )
´

 Then, if there is a solution () ∈

to the system (20) and (21), this defines the value function coefficients,

 and  in (19), and the MPE shares consumed, (14), and invested:

 = 

Ã
1− (1 +

1
 )



!
(22)

11



3.1.1 An Example with Symmetric Players (and  = 12)

In this section, we assume that players are symmetric and the intertem-

poral elasticity of substitution is equal to 2 (i.e.,  = 12). In this case,

the game can be solved analytically, as shown in the following proposi-

tion.12

Proposition 1 For  = 12  =  (i.e.,  =   =  for  = 1 2),

if 2  1 there is a unique symmetric equilibrium in which each player

successfully proposes the following consumption and investment plans:

=
1

1 +2
(23)

= 

µ
1− (1 +2)



¶
(24)

where

 =
(1 +2)(1− )22

2(1− )2 − (− )2
(25)

 =
−(1− 2)(1 + 2) + Γ

1
2

2(1− 2)
(26)

with

Γ =
£
(1 + 2)(1 + 2)

¤2 − 2422
Hence the MPE payoff coefficients are as follows:

=
12

12 − 12 ( − (1 +2))
12

(27)

=
12

12 − 12 ( − (1 +2))
12

(28)

Proof. in Appendix.

It can be shown that a proposer consumes more than a responder

in a given round (in particular,   12 for  ∈ [0 1)). Typically the
investment level is inefficient, unless, bargaining is frictionless, as shown

below.

Corollary 1. For 1 = 2 at the limit for ∆ that tends to 0, the

stationary MPE is socially optimal:

lim
∆→0

=
1

2
(29)

lim
∆→0

=()2 (30)

12Another potentially simple case would be for  = 1 However, it can be shown

that generally there is no time-invariant linear MPE for  > 1.

12



For ∆  0 bargaining leads to underinvestment.

Proof. At the limit for ∆ that tends to 0, the multiplier  in (26)

tends to 1, and therefore the consumption share  in (23) tends to 1/2.

Moreover, given that  tends to 2(1 − 2)−1 then,  in (24) goes to
()2, hence (30). It can be shown that when players are symmetric, a

social planner, who maximises the sum of players’ discounted payoffs,

would invest a share  = ()1 (this is in line with the efficient con-

sumption path derived in (45)) and would split the remaining surplus

equally among the two parties (hence  and  as in (29) and (30), are

socially optimal). For ∆  0,  in (24) is lower than (30). Hence, there

is underinvestment.

That is, frictionless bargaining can be efficient. Players with the

same rate of time preference consume half of the residual surplus and

invest a non-negative amount of surplus if sufficiently patient (i.e.,  ≥
(1 − )12) otherwise parties disinvest as a social planner would effi-

ciently choose to do.13 When there are frictions in the bargaining stage,

the equilibrium investment is inefficient. This result is driven by the

same incentives as in the hold-up problem. Although in our framework

a proposer can use a higher investment rate to facilitate an acceptance,

he never needs to invest more than the socially optimal rate.14

Differently from Muthoo (1995, 1999), where the ultimatum equilib-

rium ( = 1) is sustainable for   , in our dynamic model there will be

always an interior solution (for  = 12) for any  ≷  with   0 In-

deed, it is straightforward to see that the equilibrium demands (23) and

(24) are always interior for any value of discount factor   ∈ (0 1).15
In the rest of this subsection we highlight the effect of patience on

the MPE division in this simple case of symmetric parties. We show

that the two discount factors interact in an interesting manner.

Corollary 2. The MPE consumption demand , in (23), is decreasing

with the within-cake discount factor  and increasing with the between-

cake discount factor  while the MPE investment , in (24), is increas-

ing with both  and .

Proof. in Appendix

13This result is in accordance with Lockwood and Thomas (2002), which shows

that the level of cooperation among players tends to the efficient level in the limit as

players become patient, although their framework is quite different from ours, since

players cannot bargain (moreover, they cannot reverse their actions, while in our

model, parties are allowed to disinvest,   0).
14This result can be generalised for other values of .
15Only at the limit for  that tends to 0, the equilibrium strategies are as in an

ultimatum (that is,  = 1 and  = 0 see also footnote (28)).
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As is typically the case in the Rubisteinian game, in our dynamic

framework, an increase in the within-cake discount factor,  reduces the

share demanded , since counter-offers can be made more quickly. In-

terestingly, in dynamic bargaining, the between-cake discount factor, 

increases (rather than decreases, as for ) the share demanded. This is

because generally more patience implies higher investment, which allows

a proposer to exploit the trade-off between current and future consump-

tion. In particular, when the between-cake discount factor,  increases,

a proposer invests more and this allows his consumption demand  to

increase without fearing a rejection. Instead, when it is the within-cake

discount factor,  to increase, the exploitation of such a trade-off by a

proposer does not have a dominant effect (since it is less costly to make

counter-offers).

Although it is intuitive that more patient players invest more ( in-

creases with patience), not all players pay the cost of a higher investment.

As shown in the following corollary, although, generally, current con-

sumption levels decrease with patience, when the within-cake discount

factor, , increases, the cost of a higher investment level, is paid mainly

by the proposer (his per-period consumption, (− ) decreases).

Corollary 3. Generally, for a given , in equilibrium, each party’s per-

period consumption level decreases when either discount factor increases,

except the responder’s consumption level, (− )(1− ) which instead

increases with 

Proof. in Appendix.

The intuition is that since more patient players invest more, the (per-

period) residual surplus decreases, however, with diminishing frictions

in the bargaining stage ( increases), the responder can extract a larger

share (1− ) and a larger (current) consumption levels, (−)(1− ),

for a given . In other words, the prospect of larger future surpluses,

in this case, are not sufficient to compensate a responder, his current

consumption must increase.16

In the next section we focus on the complex interplay of forces in the

more general case of possibly asymmetric players.

3.1.2 The General Case

We have solved system (20) and (21) for different values of the parame-

ters. A selection of the numerical results is presented in the following

16In terms of overall payoffs, it is also possible to show that an increases in the

within-cake discount factor, , can make a proposer worse off ( decreases), for 

sufficiently high.
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figures and tables17, while the properties of the equilibrium are high-

lighted in the following remarks. The aim of the section is to highlight

the effects of the complex interplay of the discounting structure, the rate

of return  and the depreciation rate  (via  = +1−) on the MPE.

Typical results which hold in bargaining theory can be overturned as

shown next. In the first remark, the focus is on the share consumed (
for  = 1 2).

Remark 1. The more patient party consumes more than his opponent,

unless  is sufficiently large and the production stage is sufficiently long.

Table 1 and figure 2 are used to illustrate the remark. Table 1 presents

an overview of the MPE demands for a simple range of discount factors

(where all discount factors,  , with  = 1 2, can vary unconstrained

in (0 1)). In the case of symmetric players, we find symmetric MPE

demands, ( ), presented in the diagonal. The table entries for the

asymmetric cases include player ’s demands ( ), in the first line,

followed by player ’s ( ), in the second line, with   = 1 2 and

 6= .

Table 1 shows that the more patient proposer ( in this case) is able

to consume a larger share (that is, in the first column within each non-

diagonal table entry, the first value,  is lower than the second ).

This is in line with standard bargaining theory (without investment),

however, we show next that the possibility of investing overturns this

result, when  is sufficiently large and the production stage is long (see

figure 2).

Figure 2 shows the MPE demands as the rate  increases, for long

production stages.18 When  is sufficiently large (i.e.,  > 17), the most
patient proposer () demands a share smaller than his rival’s (  ).

The intuition is that for high rates of return  and/or low depreciation

rates , both parties have incentives to invest more, however, the most

patient party wishes to invest significantly more than his opponent (the

gap between  and  increases with ). Then, to prioritise investment,

which is the variable affecting future bargaining possibilities, the more

patient party must give up some of his current consumption while the im-

patient party can increase his demand (figure 2 shows that  decreases

with  while  increases with ).

17Unless otherwise specified, our discount factors are consistent (that is, once three

of the discount factors are fixed, say,   and , the fourth is uniquely defined,

 = (()()()).
18A long production stage implies a relative large lag between the within- and

between-cake discount factors ( − ), especially for the most impatient player

(when the discount factors are consistent, see 17).
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A crucial factor, aside a large rate  is the difference in players’ dis-

count factors (−). When  increases, relatively patient players have

incentive to invest more, however, given lemma 1, production is required

to be sufficiently long (s.t.   −(1−)). This is why the result relies
on a relatively substantial difference between players’ discount factors.

With shorter production stages and relatively high level of patience, 

would be required (by lemma 1) to be sufficiently small and in this case,

the most patient party would not be forced to make large concessions to

his opponent (i.e.,   ).

 = 03 = 04 = 04 = 06 = 08

 = 04 = 05 = 06 = 07 = 09

= 03 0883 0020 0823 0032 0727 0039 0664 0082 0389 0221

= 04 0897 0034 0912 0041 0931 0097 0971 0255

= 04 0842 0046 0750 0052 0688 0096 0404 0227

= 05 0862 0052 0891 0107 0953 0259

= 04 0778 0058 0717 0097 0430 0223

= 06 0813 0108 0907 0251

= 06 0760 0145 0461 0249

= 07 0883 0267

= 08 0633 0305

= 09

Table 1: Player ’s (’s) MPE demands (,) in the first (second) line

(for asymmetic cases), for  = 12 and  = 07.

Next, the focus is on the MPE investment plans.

Remark 2. The more patient party invests more than his opponent,

unless  = , for  = 12 with   = 1 2 and  6= 

We would expect that since the most patient party is the most con-

cerned about future payoffs then he will invest more than his opponent.

This is generally confirmed in our numerical analysis, for instance, in

table 1 (where  6 , recall the values  and  are in the second

column of each cell), and in figure 2. However, we identify an excep-

tion in table 1 which highlights an interesting effect of the discounting

structure on the investment share (this is investigated further in table 2

and the next remark). When players have the same between-cake dis-

count factors, but different within-cake discount factors (see table 1 for

( ) = (04 05) and ( ) = (04 06) and table 2 for  = 12),

they invest the same share of the surplus despite their asymmetry in

patience. Such a scenario can be contemplated in our model (apart from

comparative statics) only if the common parameter  is re-interpreted as
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a probability of game continuation after an acceptance (while production

is instantaneous, bargaining rounds still take time). This indicates a key

role played by the differences in the between-cake discount factors in the

determination of the MPE investment plans. Although such a clear cut

effect is generally true for any value of  (and the other parameters of

the model) when  = 12 it becomes more subtle for other values of ,

different from 12 as shown in table 2 below.

 = 12  = 23

 = 015 0364 00110 0386 00337

0707 00110 0728 00337

 = 035 0369 00596 0403 01198

0712 00596 0743 01199

 = 055 0381 01470 0436 02349

0724 01470 0771 02351

 = 075 0408 02722 0506 03701

0748 02722 0825 03707

 = 095 0481 04320 0700 05114

0809 04320 0940 05153

Table 2: Player ’s (’s) MPE demands (,) in the first (second) line,

for  = 09,  = 095 and  = 07.

In the next two remarks, we summarise the effects of a change in a

party’s level of patience on the MPE investment strategies (remark 3)

and payoffs (remark 4).

The most interesting effects highlighted in the next remark are that

when a party becomes more patient, both proposers may reduce their

investment shares, moreover, the within-cake discount factors can have

a negative effect on the investment shares.

Remark 3. If a party becomes more patient, both parties invest more,

only when sufficiently similar, otherwise they decrease their investment

plans. Moreover, although generally both the between- and the within-

cake discount factors have a positive effect on the MPE investment shares,

with pronounced asymmetries, the within-cake discount factor can have

a negative impact on the shares invested.

Figure 3 presents the effect of a change in player ’s patience on the MPE

demands, for  = 12  = 11 ( ) = (08 09) The x-axis represents

the player ’s within-cake discount factor,  ( varies accordingly, see

footnote 17). The effects on the consumption shares ( and ) are

simple here, but with a caveat. When player  becomes more patient he

can consume a larger share ( increases) while his opponent consumes
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less ( decreases), in line with standard bargaining theory. The caveat

is that as shown in the following remark, again with a sufficiently large

rate l (and longer production periods) this result can be overturned.

Figure 3 also shows that the investment shares are affected in a non-

monotonic way by a change in player ’s patience. Starting from low

levels of patience for player , while  becomes more patient he will reduce

his investment share ( decreases) to consume more and his opponent

is forced to reduce his investment share ( decreases) to make larger

concessions to player . However, as player ’s level of patience increases

further ( > 04), player  invests more and eventually his opponent also
becomes willing to increase his investment share ( is required to be

larger than 05). This effect is interesting, because generally, we would

expect that if a party becomes more patient, he would invest more (since

his future payoffs are discounted less heavily) and subsequently his rival

may be forced to invest more (as shown, for instance, in table 1, when we

move along each row,  and , the values in the second column of each

cell, increase with player ’s patience). Clearly, though, this is a key

incentive only when players’ asymmetry is mild. With more pronounced

asymmetries, instead, more patience can imply a higher consumption

share for an impatient party (to the extent that all players’ investment

shares are lowered).

We now disentangle the effect of the between-cake and within-cake

discount factors on the investment levels (second part of remark 3).

When players are symmetric, corollary 2 shows that both discount fac-

tors have a positive impact on the investment level. It is intuitive that

when the future payoffs are discounted less heavily, parties invest more.

However, we next show that the within-cake discount factor can have

a negative impact on the MPE investment shares, when there is a pro-

nounced asymmetry between players (in contrast with Corollary 2, which

relies instead on the symmetry of the players). To see this, consider the

last column in table 1 (for  = 08) when player ’s within-cake discount

factor, , increases from 0.5 to 0.6 (while  remains unchanged). Then,

both parties invest less ( and  decrease). The intuition is that an

increase only in  gives player  the ability to increase his (low) con-

sumption level (by demanding a larger share, , and by reducing his

investment share). As a result, his more patient opponent is forced to

make larger concessions (by reducing his investment and consumption

plans). The pronounced asymmetry between players is crucial to ob-

tain this result. With milder asymmetries, an increase in the impatient

party’s within-cake discount factor () has the expected positive effect

on parties’ investment shares (in table 1, in the second column from the

last, both  and  increase when  = 06 and again  increases from
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0.5 to 0.6).

In accumulation games with simpler bargaining structures, it has

been shown that, differently from standard bargaining theory, patience

is weakness (see footnote 19). In our model, we can re-establish the

result that patience is strength and demonstrate that patience can make

a rival better off, under certain conditions, as shown in the following

remark.

Remark 4. Assume that player i is more impatient than j, but his

patience increases. Then, his opponent, player j, consumes more and

is overall better off, if  is sufficiently large and the production stage is

sufficiently long.

Figures 4a and b show the effect of an increase in player i ’s patience

on the MPE demands (first panel) and payoffs coefficients (second and

third panel) for ( ) = (08 095) when the production stage is rela-

tively long (that is, a party’s between-cake discount factor, say j ’s, ,

is significantly lower than his within-cake discount factor, , see also

footnote 18). In terms of parameter constellations, the only difference

between figure 4a and 4b is that in the former  is lower ( = 12 in figure

4a and 13 in figure 4b). This is a crucial difference: while in figure 4a,

we obtain the standard result that as a player (i) gets more patient, his

rival is worse off (the value function coefficients,  and  decrease, see

the middle panel of figure 4a), in figure 4b, on the contrary, the oppo-

nent (j ) is better off ( and  increase for   085, see the middle

panel of figure 4b).

To understand this result, we look into the effect of patience on the

MPE strategies. In line with remark/figure 3, also in figure 4a and 4b,

when player ’s patience increases, both players invest more when the

asymmetry in patience is less pronounced (both  and  first decrease

then increase, see top panel in figures 4a and 4b). More interestingly,

in contrast with figure 3, figure 4b shows that proposer  is able to con-

sume a higher share ( increases) despite his opponent becoming more

patient. In particular, while in figure 4a (as in figure 3), for relatively

low ,  decreases monotonically, in figure 4b, with a higher return (in

particular,  = 13),  increases with patience, for  sufficiently large

(  088). The key force behind this result is that at high level of

patience, both investment rates are high and increasing ( increases for

  066 and  increases for   074 in figure 4b), given the large rate

of return ( = 13), future consumption level can compensate a relative

higher demand by a patient player.19

19The result that "patience is not strenght" is also found in Houba et al. (2000)

and Sorger (2006), although the mechanism behind this result is different. Since in
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Finally, following Muthoo (1999, p. 307), we can interpret the value

functions as a measure of overall bargaining power in long-run relation-

ships.20 Then, figures 4a and b show that, despite the concessions that

a patient player must make in equilibrium, such a player maintains the

highest bargaining power both as a proposer and as a responder (that

is,    and   , for any   095 = 095, see middle and bottom

panels in figures 4a and b).

3.2 Ultimatum-like MPE

In this section, we focus on MPE strategies in which at least one player

can extract all the surplus not invested. Given that such extreme de-

mands are typically found in the standard ultimatum procedure, we

name them ultimatum-like strategies. In the next section both players

are able to consume all the residual surplus (this is the dual ultimatum-

like MPE), while in the following section only one player is able to do

so (this is the hybrid ultimatum-like MPE). Note that, generally the

ultimatum-like MPE strategies and the interior MPE, identified in the

previous sections, do not coexist.

3.2.1 Dual Ultimatum-like MPE

Let

 = [

 ()

1−]
2

2−1

with  6= 12 and21
=

©
(  )|  ∈ (0 1)   0  ≤  ()

1−
  ∈ (0 1)

for   = 1 2  6= }
Proposition 2 If  ∈ (12 1) and (  ) ∈  there is a unique (lin-

ear) MPE in which each proposer consumes all the surplus not invested

( = 1) and his investment plan is

 =  (31)

The value function coefficients are

 =
1−

(1− )
and  =





(1− )

(32)

the disagreement phase of their models, parties can consume as much as they wish,

the impatient player can strategically use the threat of a delay to obtain a better

agreement. In our framework, instead, is the higher investment rate that makes

player j better off (this is not detrimental to the player i).
20Interpersonal comparisons of expected utility are allowed.
21A triple (  ) in characterises a real and positive MPE proposal, in which it

is subgame perfect to accept extreme consumption demands. Moreover the transver-

sality condition is satisfied. The last two constraints in explicit form are in (33) and

(34).
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for   = 1 2 with  6= 

Proof. in Appendix.

Ultimatum-like MPE can exist in our model when players are rel-

atively patient, because a proposer can compensate a responder, who

has a zero per-period consumption, by investing sufficiently therefore

increasing his future consumption levels (as a proposer). A key role

is played by the elasticity of substitution, which is required to be suf-

ficiently small (  12). The intuition is that the curvature of the

utility function in (1) decreases when consumption levels increase, but

decreases less when  is large. As a result, a player’s utility is higher

for any positive level of consumption when  is larger. Therefore, the

higher , the higher the compensation a player will obtain after accept-

ing an ultimatum-like proposal. This is why for   12 the responder

can defer consumption and accept an ultimatum-like proposal that gives

him zero current consumption while for  ≤ 12 responders accepting
the ultimatum-like proposal would not be sufficiently compensated by

future consumption levels.

The equilibrium path for investment under the ultimatum-like MPE

is simpler than the one highlighted in Remark 3. The investment rates

in (31) increase with players’ patience. Therefore, if player  becomes

more patient not only does he increases his investment but so does his

opponent. This clear-cut effect is due to that fact that only the between-

cake discount factors affect the size of  (see (31)).
22 Although as a result

of a higher investment the current surplus available for consumption is

reduced, the overall effect on player j ’s payoff is positive (using (32),

it can be shown that the coefficients for j ’s value functions both as a

proposer, , and as a responder, , are increasing with ).
23

Moreover, in our framework players can easily obtain an acceptance

by investing more, however, their investment shares do not need to be

higher than the efficient level. Indeed, as for the interior MPE, also in

the ultimatum-like MPE, there is underinvestment. That is, for 1 = 2,

the investment rates in (31) are lower than the socially optimal rate

 = ()1 (see proof of corollary 1, since 1−  1).
It has been shown that in long-run relationships without dynamic

accumulation (see Muthoo, 1995), players can have extreme forms of

bargaining power where proposers consume all the residual surplus, al-

though, only under unlikely conditions (in which the production stage

is quicker than the length of a bargaining round, ∆ ≥   see Muthoo

22The within-cake discount factors affects the solution only via its support .
23See footnote 20. Note that the models in Houba et al. (2000) and Sorger (2006)

do not support ultimatum-like MPE.
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1995, p. 594). In our dynamic framework, an ultimatum-like MPE can

be sustained under less restrictive conditions (that is ∆  ) as long

as the investment rates are sufficiently large ( =  ≥ ()
1(1−))

so as to compensate a responder for accepting extreme proposals. How-

ever, there must be some frictions in the bargaining stage. If, instead,

counter-offers can be made instantaneously (the interval ∆ tends to 0),

extreme demands are not sustainable in equilibrium. To see this, we

re-write the last two conditions in the feasibility set  as follows


2−1



1−2+22
 

2(1−)


≤ 1− 
1





1−


(33)

 

µ




¶

(34)

At the limit for ∆ that tends to 0, condition (34) cannot hold for both

  = 1 2 with  6=  Intuitively, when counter-offers can be made

quickly, extreme demands cannot be compensated by sufficiently large

investment levels and, as a result, a proposer must make some conces-

sions (and leave a positive share of the surplus to the responder).

To give an idea of the support for the ultimatum-like MPE in propo-

sition 2, we consider the case of symmetric players, then, conditions (33)

and (34), can be written as:

 ≤ (1−) 1
2−1  1 (35)

The first inequality in (35) ensures that the surplus generated is suffi-

ciently large, so that fairly patient parties still accept consuming nothing

when they are responders, while the second inequality in (35) ensures

that the equilibrium payoffs are finite. Obviously, the conditions in (35)

are less stringent when ∆ ≥   For instance, if after an agreement an-

other bargaining stage can start straightaway ( → 0) then the upper

bound for the discount factor  is simply   1 Assume, instead, it

is quicker to make a counter-offer than producing a surplus (∆  ).

Then, for fairly patient players, say ( ) = (08 09) with  = 23,

then, the constraints in (35) imply that  must belong to a specific in-

terval: [176 195).

3.2.2 Hybrid Ultimatum-like MPE

As shown in lemma 1, in addition to the dual ultimatum-like MPE, there

can be other corner solutions of the problem, in which only one player

(say, 1) is able to make extreme offers (that is, 1 = 1 while 2  1)

Intuitively, this requires sufficiently asymmetric players (so that the most

impatient party accepts an extreme proposal and makes concessions to
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the opponent when proposing). Indeed, this is what we obtain. Next, we

derive the system which characterises the equilibrium. We then present

the numerical analysis.

The System Characterising the Hybrid MPE The Bellman equa-

tions are given by (10) with 1 = 1 and with 2  1 In other words,

the constraint of the acceptance condition (11) is not binding for player

2 (i.e., 1 = 0) while it must be binding for player 2 (2  0) Let

1 = (11)
1−

and24

 =

½
(22 1)|2  1 +22  0

2

2
≤ 1  

1−


1
2
1

"Ã
1− 1 +

1
2

2

!


#1−
 1

⎫⎬⎭
where 2 = (22 +211)

1 + 1 +
1
2 , as in (17). Using the first

order condition of the Lagrangian (9), that is, (14) and (15) with1 = 0

we obtain

1=1 and 1 =
(11)

1

(11)
1 + 1

(36)

2=
1

1 +
1
2

and 2 = 

Ã
1− 1 +

1
2

2

!
(37)

Then, after some manipulations, the equilibrium coefficients can be re-

written as

1= 1−(1 + (11)
1) (38)

2=
1−

2

h
1 + 22(2 − 1−

1
2 )1−

i
(39)

1=
1−

2

∙


1−


2 + 11(2 − 1−
1
2 )1−

¸
(40)

2=22

∙
(11)

1

1 + (11)
1

¸1−
(41)

Given the indifferent condition for player 1, 1 = 11 then (38) becomes

1 =
1−³

1− (111−)
1


´ (42)

24A triple (22 1) ∈  characterises a real and positive MPE proposal, in

which player 1’s consumption demand is extreme (1 = 0) but acceptable to player

2. Moreover the transversality condition is satisfied.
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Hence, using (42) and 1 = 11 1 in (36) becomes

1 = 
1

1−
1 (43)

and (41) can be re-written as

2 = 221

The latter in (39) implies

2 =
1−


1−
2 − 22

1−1(2 − 1−
1
2 )1−

Now, both 2 and 2 are written in terms of 2 and 2 (while 1 and

1 are already solved for). The equilibrium 2 and 2 are given by the

solution of the following system½
2 = (22 +211)

1 + 1 +
1
2

1 = 11
(44)

with 1 1 and 2 as in (42), (40) and (41) respectively.

Analysis Before moving to the numerical analysis, it is worth to note

that, differently from the dual ultimatum case, in the hybridMPE, player

1’s MPE proposal and payoff coefficients are unaffected by his opponent’s

patience (in particular, 1 in (43), 1 in (42) and 1 = 11 are all

independent of both 2, and 2). In the dual case, we found that the

within-cake discount factor 2 did not affect the MPE solution (except

via its support), this is confirmed also in the hybrid case (see players’

MPE strategies, payoffs and characterising system, in (36)-(44)), where

also the between-cake discount factor 2 plays such limited role. Hence,

generally, when player 2 becomes more patient, in this corner solution

of the problem, player 1’s plans remain unchanged. It is possible to

show that, in line with the previous analysis, with a higher between-

cake discount factor, player 2’s increases his investment plan and, as

a result, he will increase his consumption share (although, this leaves

player 1’s strategies and payoffs unchanged).

Since generally there is not an analytical solution to system (44), we

now discuss the numerical solutions. The focus is on changes in player 1’s

patience (given the limited impact of player 2’s patience on the MPE).

A first striking feature of the hybrid case is that although only player

1 asks for the entire residual surplus (1 = 1), player 2 is able to de-

mand almost the same (2 is almost 1), despite being significantly more

impatient than his opponent. To see this, consider figure 5, which shows
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the MPE demands ( ) (in the top panel) and payoffs coefficients 
and  (in the bottom panel) with  = 1 2, while player 1 becomes more

patient, for  = 45,  = 18, (2 2) = (044 045) The share 2 re-

mains always very close to 1 (even for 2 approaching 1).
25 Typically

in bargaining models without investment an impatient player consumes

little, however, with a dynamic component, this effect is much weaker.

Exactly because player 2 does not value future gains as much as player

1, he can compensate player 1 by investing a portion of the surplus and

leaving him very little to consume. Such a compensation is sufficient

also due to the relative low elasticity of substitution.

Figure 5 also shows that both players invest more ( increases, with

 = 1 2) as player 1’s becomes more patient (and in line with previous

results, the more patient invests more, 1  2). However, the increasing

investment does not significantly affect player 2’s MPE payoffs (2 and

2 are almost perfectly flat in figure 5), instead, in the dual ultimatum-

like MPE, a more patient player would make the rival better off. We,

next, disentangle the effects of the between- and the within-discount

factors (1 1) on player 2’s MPE payoffs and show that they can be

significant and contrasting (as shown next in figures 6 and 7).

Figures 6 and 7 presents the results as in figure 5: the MPE demands

( ) with  = 1 2 (in the top panels) and payoffs coefficients 2 and

2 (in bottom panels)26, with the difference that only one of player 1’s

discount factors increase (for  = 45,  = 18, (2 2) = (044 045)).

In particular, in figure 6, the within-cake discount factor 1 increases

and the between-cake discount factor 1 is fixed (and equal to 08973

consistently with 1 = 09), while in figure 7, the between-cake discount

factor 1 increases and the within-discount factor 1 is fixed (and equal

to 0.9).

When the discount factor 1 increases (figure 6), player 2 demands

less and invests more, as a result he is worse off (2 and 2 decrease).

Differently, when it is the discount factor 1 to increase, player 2 is better

off (2 and 2 increase in figure 7), this results from a higher demand

(2 increases) and almost unchanged investment (see figure 7).

The results in figures 5-7 can be replicated with other parameter

constellations, however, it is worth to note some points regarding the

support for the hybrid MPE. First, if player 2 was the more patient, there

would be no feasible hybrid solution to system (44). Second, a bargaining

25It can be easily verified that there cannot be a dual-ultimatum solution for the

set of parameters considered in figure 5 (since the inequality 1 ≤ 1
1−
2 in cannot

hold).
26To focus only on player 2’s MPE coefficients, player 1’s, 1 and 1, are omitted

in figures 6 and 7 (but they follow the same monotonic trends as in figure 5).
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round must be almost as long as a production stage (assuming the more

realistic scenario that it is quicker to make a counter-offer). To see this,

note that the acceptance condition (that is, the inequality 2
2
≤ 1 in C)

is more likely to hold when player 2’s discount factors, 2 and 2, are

sufficiently close (hence, the most patient player’s discount factors, 1
and 1 are even closer). Third, high capital growth must be possible.

In particular, the parameter  is required to be sufficiently large (since
2
2
≤ 1  

1−
, see ). This, in conjunction with a sufficiently high

discount factor 2 (hence close to 2), allows that extreme demands

(1 = 1) can be accepted by the impatient party (player 2), that is, his

future gains are sufficiently high.

4 Final Remarks

The novelty of our framework is that it addresses the problem of dy-

namic accumulation within a bargaining game, following a fully non-

cooperative approach. We have shown that when investment is intro-

duced within a bargaining game, the interplay of the forces can be very

complex and that various lessons from standard bargaining theory can

be overturned. An additional novelty of our model is that extreme con-

sumption shares can be an equilibrium phenomenon, even with modest

frictions, since a proposer can invest enough to compensate a respon-

der for accepting a proposal that gives him zero current consumption.

Moreover, although generally the investment strategy can give a proposer

the ability to obtain an acceptance without making large concessions to

his opponent, players will never over-invest. Indeed, they will typically

under-invest. Only frictionless bargaining can be efficient.

In addition, when players are asymmetric, they agree on dynami-

cally inefficient divisions, since typically they will share the surplus not

invested, instead it would be Pareto superior to let only the impatient

player consume a positive share of the initial  surpluses and let only

the patient party consume afterwards. Although the solution is dy-

namically inefficient, it is dynamically consistent. Dynamic consistency

emerges from the fact that players do not commit to future behaviours,

in each period they simply optimise their behaviour taking into account

the effect of current decisions.

Institutions could re-establish efficiency. For instance, with focus

on players with similar rates of time preference, if they could commit

to share all the residual surpluses equally, then, even if impatient they

can behave efficiently (regardless of the bargaining procedure adopted).

Suppose for instance that before entering a business two partners could

sign a contract that specifies that each will obtain half of the profits

not re-invested. Then, their investment plan would be efficient. Accord-
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ingly, policy makers may wish to create institutions which guarantee an

appropriate division of mutual gains to encourage efficient investment

paths in ongoing negotiations.

APPENDIX

Proof of Lemma 127

Consider any subgame where player  proposes first. Let  be the state

variable and () (()) the sum of discounted payoffs to player  ()

in an arbitrary MPE, with   = 1 2 and  6=  The sum of discounted

utilities () and () are bounded:

()() ∈
⎡⎣0 1−

1− 

1−³
1− (1−)

1
´
⎤⎦

if 
1−  1 The upper bound has been derived by assuming that the

investment and consumption paths are to maximise player ’s payoff as in

a standard saving model (without bargaining). Using the value function

iteration method it can be shown that the per-period consumption for

player  is given by


³
1− ¡

1−¢1´  (45)

and all the surplus not consumed by player  is invested. The condition


1−  1 must hold to have the convergence of the sum of discounted

payoffs.

Within the bargaining framework, if player  accepts a proposal

( ), when the state is , he gets

(  ) + (+1)

while if he rejects it, he obtains () Therefore, the proposal is

accepted if and only if

(  ) ≥ ()− (+1) (46)

We now distinguish three cases, in the first, the RHS of (46) is non-

positive for both players, in the second is positive for both players and

in the third is non-positive for only for one player.

27The proof generalises the arguments in Muthoo (1995) to the case of dynamic

accumulation (and concave per-period utility). The proof holds for any concave

per-period utility as long as the sum of discounted utility in the standard saving-

consumption problem (without bargaining) are bounded. However, given the focus

of the paper, in the following we assume CES per-period utility.
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In the first case, where the RHS of (46) is non-positive for   =

1 2 and  6=  in equilibrium player  consumes all the surplus not

invested ( = 1 with  = 1 2) without facing a rejection. Subgame

perfections also requires that player 0s investment maximises the sum
of his discounted payoff (()).

In the second case, if the RHS of (46) is positive for both players,

then there are two possibilities: a proposer prefers to make either an

acceptable offer or an unacceptable one. In the former, the optimal

proposal ( ) must be such that the investment plan  maximises

the sum of his discounted payoff (()) under the constraint (46) while

the share  must be strictly smaller than 1 (otherwise the LHS of (46)

is 0), but as large as possible so as to obtain an acceptance ((46) is

satisfied). Hence, in this scenario the proposal ( ) is such that the

following holds

(  ) = ()− (+1) (47)

and this is the case when

(  ) + (+1) ≥ ()

Alternatively, the proposal is unacceptable, that is,

(  ) + (+1)  () (48)

and this is the case when

(  ) + (+1)  () (49)

We now show that (47) must hold. Suppose, by contradiction, that

it does not, then there are 2 cases: a and b. In case a, assume that

(48) holds for both players. Then, there is no acceptable offer when

the state is  (therefore, the state +1 is never reached) and () =

(+1) = () = (+1) = 0 for any   = 1 2 which lead to a

contradiction. In case b, assume that (48) holds only for one player,

without loss of generality, say 1 Then, player 1 makes an unacceptable

offer, that is, (49) holds for  = 1 and  = 2 while player 2 makes an

acceptable offer, that is (47) holds for  = 2 and  = 1. As a result,

1() = 11() = 1
0
1() similarly, 2() = 22() = 2

0
2()

 0
2()=2(2 2 ) + 22(+1)

 0
1()=1(2 2 ) + 11(+1)

Since (47), for  = 2 and  = 1 is also equivalent to  0
1() = 11()

then, it must be 0
1() =1() = 0 = 1() which is a contradiction.
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In conclusion, if the RHS of (46) is positive for both players, for any state

 a proposal ( ) is part of an MPE if immediately accepted.

Finally, in the third case, without loss of generality, the RHS of (46) is

non-positive for  = 1 only. Then, in equilibrium player 2 must consume

all the surplus not invested (2 = 1) without facing a rejection, while

player 1, if he makes an acceptable offer, it must be that 1  1 and such

that (46) is binding, with  = 1 and  = 2 We now show that player 1

does not have any incentive to make an unacceptable offer. Assume, by

contradiction that player 1 is better off in making an unacceptable offer,

when the state is 

1(1 1 ) + 11(+1)  1(0 + 11(+1)) (50)

If player 1 would set 1 = 0 and 1 = 2 when player 2 would accept

this offer and player 1 would get 11(+1) which, using the acceptance

condition for (2 2) would be not smaller than 111(+1) hence

player 1 would be better off, which is a contradiction.

Proof of Proposition 1

For  = 12 and  = , system (20)-(21) has a unique symmetric

solution which is given by (25) and (26). Then, the MPE demands (23)

and (24) and payoff coefficients (27) and (28) follow from (14), (19) and

(22). Moreover the support set M can be replaced by the condition

2  1 given that   ∈ (0 1) and   0

Proof of Corollary 2

The multiplier decreases with  and increases with  because,




=
2(1− 2)

³
(1 + 2)(1− 2)− Γ

1
2

´
(1− 2)2Γ

1
2

 0




=
(1 + 2)(1 + 2)

³
Γ
1
2 − (1 + 2)(1− 2)

´
2(1− 2)2Γ

1
2

 0

for any   in (0 1) and 2  1 Therefore the MPE demand (23)

increases with  and decreases with 

For the MPE investment (24),



µ




¶
= −

µ
((1 +2))



¶
= 

⎛⎝
(−)2

(1−)22


⎞⎠
where


(−)2

(1−)22


=
8(1 + 2 + 2(1− 32)− Γ

1
2 )(1 + 2)(1− 2)

Γ
1
2 (3− 2 − 2(1 + 2)− Γ

1
2 )332

(51)
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with

 = 1 + 2 + 2(1 + 4 − 62 + 22(1 + 2))− Γ
1
2 (1− 22)

It can be shown that all terms in (51) are positive. Therefore the MPE

investment (24) increases with 

Finally,



µ




¶
= 

Ã


µ
 −

1− 

¶2


!
where

 −
1−


=
4(1− 2)(1 + 2)

Γ
1
2 (Γ

1
2 − 3 + 2 + 2(1 + 2))22

(52)

with

 = (1 + 2)(1 + 422) + 2((1− 2)2 − 42)− Γ
1
2 (1− 22)

It can be shown that all the terms in (52) are positive, then the MPE

investment (24) increases with .

Proof of Corollary 3

From corollary 2 we can conclude that an increase in  decreases the

proposer’s consumption, (− ) (since  decreases while  increases

with ) and an increase in  decreases the responder’s consumption,

(−)(1−) (since  and  increases with ) In addition, the proposer’s
current consumption is as follows,

(− ) =  =
2(1− 2)2

 + Γ
1
2 (1 + 2)

where

 = (1 + 2)(1 + 2)2 − 82

It can be shown that   0 then we can conclude that (−) de-
creases with patience. Instead, the responder’s per-period consumption,

which can be written as 2


 increases with .

Proof of Proposition 2

By the complementary slackness condition, if the constraint  ≥ 
is not binding, the multiplier  in (9) is zero. Then, the first order

conditions (14) and (15) for  = 0 become:

=
()

1− (1− )

()
1 + 1

(53)

=1 (54)
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We now input the first order condition in the Bellman equation (10) and

after simplifying we obtain that  = 

 
1− with  = 1 + ()

1

The rate of investment (??) can now be written as  =  − 

or

 = 
³
1− 1



´
 Consequently, the responder’s MPE payoff coefficient is

 = 
1−


This and the definition of , that is ( − 1) = , implies the

following system:

2 
2(1−)

µ
 − 1


¶1−
=

µ
 − 1


¶

For  ∈ (12 1) there is a unique solution given by

 =
1

1− 
(55)

with  ∈ (0 1)28 This defines an acceptable offer if the responder is
better off in accepting rather than rejecting the offer:


1−
µ
1− 1



¶1−
≥ 

that is, ()
1− ≥  for   = 1 2 with  6=  The latter, together with

 ∈ (0 1) implies the conditions set in (33) and (34). Under such condi-
tions, also the transversality condition is satisfied (since 2 (

2)
1−  1

implies the second inequality in (33)). Finally, given (55), the coefficients

 = 

 
1− and  = ( − 1) can be written as in (32).
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Figure 2. MPE demands for =1/2, ( )=(0.5,0.9) and

( )=(0.7,0.95).
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Figure 3. MPE demands for  = 12  = 11 and ( ) = (08 09)
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Figure 4a. MPE for  = 23  = 12 and ( ) = (08 095)
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Figure 4b. MPE for  = 23  = 13 and ( ) = (08 095)

37



0.8 0.85 0.9 0.95
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

M
P

E
 d

e
m

a
n
d
s

δ
1

 

 

r
1

x
1

r
2

x
2

0.8 0.85 0.9 0.95
0

2

4

6

8

10

12

14

16

M
P

E
 p

a
yo

ff
s

δ
1

 

 

μ
1

φ
1

μ
2

φ
2

Figure 5. MPE for =4/5, =1.8, (2 2)=(0.44,0.45).
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Figure 6. MPE for =4/5, =1.8 (2 2)=(0.44,0.45), 1 =0.8973.
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Figure 7. MPE for =4/5, =1.8, (2 2)=(0.44,0.45), 1=0.9.
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