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1 Introduction

The fair division of a bundle of goods (manna) among agents with heterogenous
preferences is an important challenge for normative economic analysis. The dif-
ficulty is to combine effi ciency (Pareto optimality) with some convincing notion
of fairness. When agents are responsible for their ordinal preferences, and car-
dinal measures of utility are not relevant, the division rule favored by economist
is the Competitive equilibrium with equal incomes, thereafter CEEI, invented
almost 50 years ago (Varian, Kolm).
Here we discuss this rule in the important special case where individual

preferences are linear. This means that the goods are perfect substitutes and
each participant in the division needs only report p − 1 rates of substitution if
there are p goods to share. This assumption is less drastic than may appear.
On the one hand it is the only practical approach in several free web sites

(Adjusted Winner, Spliddit) computing fair solutions for concrete division prob-
lems: siblings are sharing family heirlooms, partners divide the common assets
upon dissolving their partnership, and so on. They are asked to distribute 100
points over the (divisible) goods, and the resulting distribution is interpreted
as an additive utility function representing the underlying linear preferences.
Anything more sophisticated involving comparisons of subsets of goods is im-
practical when we have more than a couple of goods. On the other hand perfect
substitutability is realistic when we divide inputs into a production process such
as land, machines with same function but different specifications, hours of work
with different skills, computing resources, etc..
One critical property of the CEEI rule when preferences are linear (or more

generally homothetic) is that it maximizes the product of the canonical linear
(homothetic) utility functions over all feasible allocations (Gale). Therefore the
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corresponding profile of utilities is unique, and depends continuously upon the
parameters of the problem (MRSs and endowment of the goods).1

Another fair division method is also popular, in fact more so on the free web-
sites just mentioned: the Relative Egalitarian solution (aka Egalitarian Equiv-
alent, Adjusted Winner), thereafter REG, simply equalizes the relative gains
of the participants, i. e., the number of points on each individual share.2 By
contrast the CEEI solution offers equal opportunity of choice, because everyone
gets his best allocation in the common budget set: in particular no one envies
the share of anyone else.
We show here that the CEEI division rule meets two additional proper-

ties that the REG rule fails: one is the familiar Resource Monotonicity prop-
erty (RM), the other is a new incentive compatibility property that we call
Verification-proofness (VP). In fact (a group version of) the VP property, to-
gether with standard properties of effi ciency and symmetry, delivers a compact
characterization of the CEEI solution.
RM says that as we add new goods to the pot (or increase the quantity

of some goods), every agent weakly benefit from the change. This appealing
normative property has an incentive interpretation as well: if RM fails an agent
will sometime prefer to waste some goods that adding them to the common pot.
The CEEI rule fails RM on the general Arrow Debreu domain3 . The REG rule
fails it even on the linear domain.
Recall theStrategyproofness requirement that no agent should benefit by re-

porting anything but her true preferences to the division manager. Even on
the linear domain, no effi cient division rule can be both strategyproof and min-
imally fair (e.g., treating participants symmetrically: Zhou, Schummer). The
VP property weakens Strategyproofness by distinguishing the goods that our
agent actually consumes upon implementing the rule, from those she doesn’t
consume. We assume that preferences over individual allocations are ex post
verifiable: because you consume positive amounts of goods a and b, I can ob-
serve your marginal rate of substitution between a and b. This assumption is
not convincing in the case of family heirlooms, much more so when we share
inputs such as land or machines of which the productivity is easily inspected.
Ex post verifiability allows the manager to punish misreports over goods

actually consumed, but an agent can still lie about the goods he will not con-
sume at all. Verification-proofness makes such misreport unattractive to each
participant.
It is easy to manipulate the REG division rule by exagerating the worth

of those goods we do not get (as long as we still don’t get them after the
misreport). Not so for the CEEI rule, that even meets a group version of VP:
no joint misreport where everyone is truthful about goods he actually consumes,
can benefit the coalition members, all weakly and at least one strictly.

1 In the general Arrow Debreu domain of preferences, multiple competitive solutions can
happen, and the selction problem has no easy normative answer.

2The REG solution is an instance of the familiar Kalai-Smorodinski bargaining solution.
3And so does any effi cient rule guaranteeing a fair share of the pot to every participant:

Moulin and Thomson.
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Out main result (Theorem 1) is that the CEEI rule is the only effi cient and
symmetric division rule that is Group-VP and treats two goods on which all
individual MRSs agree as a single object.

2 The model

The finite set of agents is N with generic element i. We assume |N | = n ≥ 2.
The finite set of (divisible) goods is A with generic element a. The manna
consists of 1 unit of each object.
Agent i’s allocation (or share) is some zi ∈ [0, 1]A; the profile z = (zi)i∈N

is a feasible allocation if
∑
N zi = eA, where all coordinates of eA in RA+ are 1.

The set of feasible allocations is Φ(N,A).
Each agent is endowed with linear preferences over [0, 1]A, represented for

convenience by a vector ui ∈ RA+ (a utility function). We keep in mind that
only the ordinal preferences matter, i. e., for any λ > 0, ui and λui carry the
same information. Given a profile of shares z we write i’s corresponding utility
as Ui = ui · zi =

∑
A uiazia.

A division problem is a triple (N,A, u) and the corresponding set of feasi-
ble utility profiles is Ψ(N,A, u). Note that we may have useless goods (uia = 0
for all i) or uninterested agents (uia = 0 for all i). Otherwise we speak of useful
goods and interested agents.
We give two equivalent definitions of a division rule, in terms of utility profiles

or of feasible allocations. When we rescale each ui as λiui the new profile of
utilities is written λ ∗ u.
Definition 1
i)A division rule F associates to every problem (N,A, u) a utility profile F (N,A, u) =
U ∈ Ψ(N,A, u). Moreover F (N,A, λ ∗ u) = λ ∗ U for any rescaling λ where
λi > 0 for all i.

ii) A division rule f associates to every problem (N,A, u) a subset f(N,A, u)
of Φ(N,A) such that for some U ∈ RA+:

f(N,A, u) = {z ∈ Φ(N,A)|(ui · zi)i∈N = U}

Moreover f(N,A, λ∗u) = f(N,A, u) for any rescaling λ where λi > 0 for all i.

The one-to-one mapping from F to f is clear. Definition 1 makes no distinc-
tion between two allocations with identical welfare consequences.
Note that a useless good can be divided arbitrarily, and, if the rule is effi cient,

an uninterested agent can only consume positive amounts of useless goods.

A Lemma about effi cient allocations For z ∈ Φ(N,A) define the bipartite
N ×A graph Γ(z) = {(i, a)|zia > 0}.
Define the set Ψeff (N,A, u) of effi cient utility profiles.

Lemma 1 If U ∈ Ψeff (N,A, u) then there is some z ∈ Φ(N,A) representing
U such that Γ(z) is a forest (acyclic graph).
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Proof. Assume first that all goods are useful. Pick z representing U and assume
a K-cycle in Γ(z): zkak , zkak−1 > 0 for k = 1, · · · ,K, where z1a1−1 = ziaK . Then
ukak , ukak−1 are positive for all k: if ukak = 0 effi ciency and uNak > 0 imply
zkak = 0.
Assume now

u1a1

u2a1

· u2a2

u3a2

· · · · ·
u(K−1)aK−1

uKaK−1
· uKaK
u1aK

> 1 (1)

Then we can pick arbitrarily small positive numbers εk such that
u1a1 · ε1

u1aK · εK
,
u2a2 · ε2

u2a1 · ε1
, · · · , uKaK · εK

uKaK−1 · εK−1
> 1

and the corresponding transfer to each agent k of εk units of good k against
εk−1 units of good k − 1 is a Pareto improvement, contradiction. Therefore (1)
is impossible; the opposite strict inequality is similarly ruled out so we conclude

u1a1

u2a1

· u2a2

u3a2

· · · · ·
u(K−1)aK−1

uKaK−1
· uKaK
u1aK

= 1

Now if we perform a transfer as above where
u1a1 · ε1

u1aK · εK
=
u2a2 · ε2

u2a1 · ε1
= · · · = uKaK · εK

uKaK−1 · εK−1
= 1

the utility profile U is unchanged.If we choose the numbers εk as large as possible
for feasibility, this will bring at least one entry (k, ak) or (k, ak−1) to zero, so in
our new representation z′ of U the graph Γ(z′) has fewer edges. We can clearly
repeat this operation until we eliminate all cycles of Γ(z).

Now if some goods are useless we give them all to an arbitrary agent and
the statement still holds. �

3 The CEEI rule

The set fCEEI(N,A, u) contains all competitive allocations when agents are
endowed with equal incomes (or equal shares of all goods): the allocation z is a
Competitive Equilibrium with Equal Incomes (CEEI) if there is a price p ∈ RA+
such that

∑
A pa = n and

zi ∈ arg max
yi∈RA+

{ui · yi|p · yi ≤ 1} for all i

Theorem (Gale 1960): the CEEI rule fCEEI selects precisely all the feasible
allocations in the economy (N,A, u) maximizing the product of utilities:

fCEEI(N,A, u) = arg max
Φ(N,A)

ΠNu
i · zi

This is a bona fide division rule in the sense of Definition 1: the corresponding
utility profile (ui · zi)i∈N = FCEEI(N,A, u) is unique.
The main consequence of this remarkable result is that at an MP allocation, the
participants have equal opportunities in the sense of the familiar property

No Envy: ui · zi ≥ ui · zj for all i, j
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the KKT characterization of FCEEI The CEEI rule maximizes a quasi-
concave function over a convex compact set, hence it is characterized by a system
of first order conditions often called the KKT conditions. They play a big role
throughout the paper.
We assume uNa > 0 for all a and uiA > 0 for all i. Then U = FCEEI(N,A, u)

has Ui > 0 for all i.
Lemma 2 Fix a problem (N,A, u), a profile U ∈ Ψ(N,A, u), and let A∗ be the
set of useful goods. Then U = FCEEI(N,A, u) if and only if U is achieved by
an allocation z ∈ Φ(N,A∗) such that Γ(z) is a forest where a node i is isolated
iff if i is uninterested (then zi = 0), and among interested agents we have

uia
Ui
≥ uja

Uj
for all (i, a) ∈ Γ(z) and all j ∈ N (2)

(in particular Ui > 0)
Proof: It is clearly enough to prove the result when all goods are useful and
all agents interested.
only if. Take z representing U s. t. Γ(z) is a forest (Lemma 1). Then if zia > 0
we can transfer some small amount of a to any agent j, and the inequality above
makes sure this does not increases the Nash product.
if. We check that the system {uiaUi ≥

uja
Uj
for all (i, a) ∈ Γ(z) and all j} is

precisely the KKT one. The Lagrangien is

L(z, δ, θ) =
∑
N

ln(ui · zi)−
∑
A

δa(zNa − 1) +
∑
i,a

θ+
iazia + θ−ia(1− zia)

where θ ≥ 0 and the sign of each δa is arbitrary. The conditions ∂L∂z (z, δ, θ) = 0
amount to

uia
Ui
− δa + θ+

ia − θ
−
ia = 0 for all i, a (3)

If zia = 1 then zja = 0 for all j 6= i, and system (3) gives uia
Ui
≥ δa ≥ uja

Uj
.

If 0 < zia < 1 then uia
Ui

= δa, and for another agent j we have zja < 1 hence
uja
Uj
≤ δa.�

4 Resource Monotonicity

The following property has played a major role in the modern fair division
literature (see surveys by Thomson):

• Resource Monotonicity: A ⊂ B =⇒ U i(N,A, u[A]) ≤ U i(N,B, u[B])

This simply says that more goods to divide cannot be bad news to anyone,
so that no one has an incentive to sabotage the discovery of additional "manna".
However recall that in the general Arrow-Debreu preference domain, no effi cient
division rule can be resource monotonic and meet at the same time the oldest
test of the cake division literature: every participant can claim his fair share of
the resources and be gone (Moulin and Thomson 1988).
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• Fair Share Guarantee: Ui = ui · zi ≥ ui · ( 1
|N |e

A)

In the linear domain however, this incompatibility disappears:

Lemma 3 The division rule FCEEI is resource monotonic.
Proof We first generalize the definition of FCEEI , fCEEI to problems where the
endowment ωa of each good is arbitrary, and we check that the KKT conditions
capturing the optimal allocations fCEEI(N,A, ω, u) are unchanged. Then we
fix N,A, u, ω, ω′ such that ω ≤ ω′. For λ ∈ [0, 1] we write ωλ = (1− λ)ω + λω′,
and for every forest Γ in N ×A we define

B(Γ) = {λ ∈ [0, 1]|∃z ∈ fCEEI(N,A, ωλ, u) : Γ(z) = Γ}

Note that B(Γ) can be empty or a singleton, but if it is not, then it is an interval.
To see this take z ∈ fCEEI(ωλ), z′ ∈ fCEEI(ωλ′) such that Γ(z) = Γ(z′). For
any ω′′ = (1 − µ)ωλ + µωλ

′
the allocation z′′ = (1 − µ)z + µz′ is feasible,

z
′′ ∈ Φ(N,A, ω′′), the forest Γ(z′′) is unchanged, and the KKT system (2),
which holds at z and z′, also holds at z′′. Thus z′′ ∈ fCEEI(ω′′) and the claim
is proven. In fact B(Γ) is a closed interval because the mapping ω → U(ω) is
continuous (an easy consequence of Berge Theorem).
Next we claim that inside an interval B(Γ) the rule FCEEI is resource

monotonic. The forest Γ is a union of subtrees. If a subtree contains a sin-
gle agent i, she eats (in full) the same subset of goods for any λ in B(Γ), hence
her utility increases weakly in λ. If a subtree of Γ connects the subset S of
agents, then system (2) fixes the direction of the utilities (Ui)i∈S , because if i, j
both consume good a we have uia

Ui
=

uja
Uj

and such equalities connect all agents
in S. As λ increases in B(Γ) this implies that these Ui are co-monotonic, but
as the agents in S eat together the same subset of goods, effi ciency implies that
the Ui increase weakly.
Finally Lemma 1 implies that the closed intervals B(Γ) cover [0, 1], so [0, 1]

is a finite union of closed intervals with non empty interior, and the desired
conclusion U(ω) ≤ U(ω′) follows. �
To see the force of Lemma 3, we note that the very popular Relative Egal-

itarian (REG) rule is not resource monotonic on the linear domain. This rule
equalizes the normalized utilities as much as permitted by effi ciency.
If uia > 0 for all i ∈ N, a ∈ A, the rule picks the utility profile U ∈

Ψeff (N,A, u) defined by45

Ui
ui · eA =

Uj
uj · eA for all i, j

4 If some uia are zero this equality may be incompatible with effi ciency and we need to use
a lexicographic refinment.

5The rule FREG meets the Fair Share Guaranteed property but may generate envy.
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5 Verification-Proofness

We use the notation [zi] for the support of zi ∈ [0, 1]A, i. e., the set of goods
a such that zia > 0. In the following definitions, we fix N,A and omit them in
the argument of division rules.
Given two (individual) utilities ui, vi ∈ RA+, and a subset Y ⊆ A, we say

that vi is truthful to ui on Y if uia and via are both zero or both non zero for
all a ∈ Y , and uia

uib
= via

vib
for all a, b ∈ Y .6

Definition 2 The division rule f is Verification-Proof (VP) if for all i ∈ N, u ∈
RA×N+ and vi ∈ RA+

{vi is truthful to ui on [zi], for some z ∈ f(vi, u−i)} =⇒ Fi(u) ≥ ui · zi

We need the group version of VP in our characterization result. Fix S ⊆ N,
and u, v ∈ RA×N+ such that uj = vj for j /∈ S. Given the rule f , we say that v
is a non verifiable manipulation by S at u if

{vi is truthful to ui on [zi] for all i ∈ S, for some z ∈ f(v)} (4)

and
ui · zi ≥ Fi(u) for all i ∈ S, with at least one strict inequality (5)

Definition 3 The division rule f is GroupVerification-Proof (GVP) if no coali-
tion ever has a non verifiable manipulation.

Lemma 4 The CEEI rule is GroupVerification-Proof.
We prove in fact that CEEI meets a stronger property. Given u, v ∈ RA×N+

and y ∈ F (u), z ∈ F (v)

{vi is truthful to ui on [zi] for all i} =⇒ {ui · yi ≥ ui · zi for all i} (6)

Proof : Under the above premises we assume that the set N∗ of agents such
that ui · yi < ui · zi is non empty, and derive a contradiction.
Fix i ∈ N∗ and consider an agent j, if any, such that [zi] ∩ [yj ] 6= ∅. We

claim that j ∈ N∗. Pick a ∈ [zi] ∩ [yj ], i.e., (i, a) ∈ Γ(z) and (j, a) ∈ Γ(y).
Apply (2) first at u then at v

uja
uj · yj

≥ uia
ui · yi

and
via
vi · zi

≥ vja
vj · zj

By the truthfullness assumption via
vi·zi = uia

ui·zi and
vja
vj ·zj =

uja
uj ·zj , thus the above

inequalities imply
ui · yi
uj · yj

≥ uia
uja

and
uia
uja
≥ ui · zi
uj · zj

(note that uja > 0 by effi ciency and yja > 0). Combining this with ui ·yi < ui ·zi
gives uj · yj < uj · zj as claimed.

6With the convention that the equality holds if both denominators are null.
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The claim implies that ∪i∈N∗ [zi] and ∪j∈N�N∗ [yj ] are disjoint. But the
complement of ∪j∈N�N∗ [yj ] in A contains all the goods eaten exclusively by
agents in N∗ at y, while ∪i∈N∗ [zi] contains all the goods that are at least
partially eaten by agents in N∗ at z: therefore our assumption that everyone in
N∗ strictly prefers z to y at u contradicts the effi ciency of y.�

6 Characterization of FCEEI

We use four axioms in addition to GVP. The first two are standard

• Effi ciency (EFF): F (N,A, u) ∈ Ψeff (N,A, u) for all (N,A, u)

• Symmetry (SYM): (the label of agents and goods does not matter) F is
invariant with respect to permutations of N , and of A

The next two axioms come from the fair division context, and they are very
mild.
We say that problem (N,A, u) is partitioned in two subproblems (Nk, Ak, uk),

k = 1, 2, if N1, N2 partition N , A1, A2 partition A, and agents in Nk do not
care for objects in Al, for {k, l} = {1, 2}.

• Partition (PAR): the rule solves each subproblem of a partitioned problem
separately

(i. e., F (N,A, u) is the concatenation of F (Nk, Ak, uk) for k = 1, 2)
We say that two goods a, b are equivalent in problem (N,A, u) if

uia · ujb = uib · uja for all i, j ∈ N

(So a useless good (uia = 0 for all i) is equivalent to every other good). To merge
goods a and b means to replace the problem (N,A, u) by (N,A∗, u∗) where a, b
become a single good a∗ with utilities u∗ia∗ = uia + uib for all i, while utilities
for other goods are unchanged.

• Equivalent Goods (EG): if we merge two equivalent goods a, b then
F (N,A∗, u∗) = F (N,A, u)

Note that a useless good can be merged with any other good, without altering
the utility profile: this is a way of saying that useless object are irrelevant.
All four axioms are met by many welfarist rules, such as the Relative Egali-

tarian one.7

Theorem: The CEEI rule is characterized by Effi ciency, Symmetry, Partition,
Equivalent Goods, and GroupVerification-Proofness

We stress that the only fairness axiom in the Theorem is Symmetry. No
Envy is not used.

7Other instances include, for any q,−∞ ≤ q ≤ +∞, the rule minimizing
sign(q)

∑
N (

ui
ui·eA

)q .
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Proof
The CEEI rule clearly meets the four axioms just introduced.
Conversely we fix a rule F, f meeting all axioms. The set N is fixed through-

out and written [n] = {1, · · · , n}. The set A varies and in view of the Symmetry
property is always written [m]. Then a problem is described by a non negative
n×m utility matrix u = [uia]i∈[n],a∈[m]. We write R(n,m) the set of such matri-
ces, and A(n,m) the set of allocation matrices z = [zia] defined by: z ∈ R(n,m)

and
∑
i zia = 1 for all a. The rule F maps R(n,m) into R[n]

+ and f is a corre-
spondence into A(n,m). Recall from Definition 1 that F, f are scale invariant :
multiplying a certain row of u by a (strictly) positive constant does not change
the image of f , and multiplies the corresponding coordinate of F (u) by the
constant.

Step 1 Fix m, a ∈ [m] and i ∈ [n].Consider two problems u, u′ ∈ R(n,m) that
only differ in that u′ia = 0 < uia. Then

{zia = 0 for some z ∈ f(u)} =⇒ f(u) = f(u′)

This follows from GroupVP. There is some j, j 6= i, who likes a otherwise by
effi ciency i should be eating all a at u. Then effi ciency at u′ implies z′ia = 0
for any z′ ∈ f(u′). Pick z as in the premises above: VP (Definition 2) from
the truth u to the misreport u′ gives ui · zi ≥ ui · z′i; and applied from u′ to
u it gives u′i · z′i ≥ u′i · zi, so we get ui · zi = ui · z′i. Now fix another agent j
and apply GroupVP from u to u′, where both i and j are truthful on [z′i] and
[z′j ] respectively: because ui · zi = ui · z′i we must have uj · zj ≥ uj · z′j . And
GroupVP from u′ to u gives the opposite inequality. We see that z and z′ yield
the same utilities at u; as z′ is arbitrary in f(u′) we get f(u′) = f(u), and the
desired equality by Definition 1.

Step 2 For each ` ∈ [n] and w ∈ R[n]
+ we define the following matrix u`,w ∈

R(n, n + 1), with the help of the familiar symbol δ : δij = 1 if i = j, δij = 0 if
i 6= j:

u`,wij = δijwi for all i, j ≤ n (7)

u`,wi(n+1) = 1 if i ≤ ` ; u`,wi(n+1) = 0 if i ≥ `+ 1 (8)

and we write D(n, n + 1) the subset of such matrices. Each good j, j ≤ n is
liked by agent j only (or is useless if wj = 0), while good n + 1 is liked by the
first ` agents only. The subset A(n, n+ 1)∩D(n, n+ 1), denoted AD(n, n+ 1),
contains the following allocations z`,t, where t ∈ R[`]

+ :

z`,tij = δij for all i and j ≤ n ; z`,ti(n+1) = ti if i ≤ `, = 0 if i ≥ `+ 1 (9)

(thus
∑`

1 ti = 1)
By Effi ciency f maps D(n, n+ 1) into AD(n, n+ 1); if all goods are useful,

i. e., w � 0, then f(u`,w) reduces to z`,t.
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It is easy by Lemma 2 to compute the allocation fCEEI(u`,w) = z`,t ∈
AD(n, n + 1) at such a problem.8 Relabel the rows so that the sequence wk is
weakly increasing in [`] (and arbitrary after `). The inequality

wi ≤
1

i
(1 +

i∑
j=1

wj) (10)

holds for i = 1 and we let i∗ be the largest integer in [`] such that it does. Thus
if i∗ ≤ `− 1 we also have 1

i (1 +
∑i
j=1 wj) < wi′ for i∗ + 1 ≤ i′ ≤ `.

The vector t defining z`,t, and the utility profile FCEE(u`,w) = U , are

ti =
1

i∗
(1 +

i∗∑
j=1

wj)− wi for 1 ≤ i ≤ i∗, and ti = 0 for i∗ + 1 ≤ i ≤ `

Ui =
1

i∗
(1 +

i∗∑
j=1

wj) for 1 ≤ i ≤ i∗, and Ui = wi for i∗ + 1 ≤ i ≤ n (11)

(we omit the easy proof)
The key to the rest of the proof is to show that the rule f coincides with

fCEEI on D(n, n + 1). But before checking this, we need a reduction Lemma
which is our next step.

Step 3 Fix u ∈ R(n,m), a good a ∈ [m] useful only to the first ` agents, ` ≥ 1,
and an allocation z ∈ f(u). Consider the matrix u`,w ∈ R(n, n+ 1), where

wi =
ui · zi
uia

− zia for 1 ≤ i ≤ ` (12)

wi = ui · zi for i ≥ `+ 1 (13)

Then we have f(u`,w) = z`,t (or z`,t ∈ f(u`,w) if some goods are useless), with
ti = zia for all i ≤ `.
Proof of the claim. Set U = F (A, u) so Ui = ui · zi. Starting from prob-
lem (A, u) and allocation z, we use EO and Step 1 to construct a sequence of
problems (kA,k u) and allocations kz such that for all k: F (kA,k u) = U and
kz ∈ f(kA,k u), and the sequence ends at ([n+1], u`,w), z`,t defined in the Claim.
EO is about merging equivalent goods, but it also allows us to split any

good b ∈ A into equivalent goods. We split b into n equivalent goods bi, one
for each i ∈ N : utilities for bi are now (zibujb)j∈N ; in particular bi is useless
if zib = 0. Write (1A,1 u) the new problem with |A| + n − 1 goods. By EO
F (1A,1 u) = U therefore f(1A,1 u) contains the allocation 1z that gives all good
bi to i (1zibj = δij) and coincides with z elsewhere. Now let 2u obtain from 1u
by lowering to zero each term 1ujbi = zibujb with j 6= i, while every other entry
of 1u is unchanged: Step 1 (applied to each good bi) implies 1z ∈ f(2u) and
F (1A,2 u) = U .

8Strictly speaking fCEEI(u`,w) is a singleton only if all goods are useful.
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After repeating this operation for every good b ∈ A�a (recall a is fixed in the
statement of the claim), we obtain a problem (3A,3 u) with |3A| = 1+n·(|A|−1),
where each good bi is liked only by agent i (or is useless) and 3uibi = zibuib.
Moreover F (3A,3 u) = U and f(3A,3 u) contains 3z allocating a just like z, while
each useful good bi is eaten by i only. Fix now agent i and consider goods b and
c in A�a: if 3uibi and 3uici are both positive the goods bi and ci are equivalent
because only i likes them; if 3uibi and/or 3uici is zero they are still equivalent
because a useless good is equivalent to any other good. Thus if we merge bi and
ci into a good for which i’s utility is 3uibi +3 uici = zibuib + zicuic, EO implies
that in the new problem the rule still picks the same utility profile U .
Now we merge successively all goods bi, b ∈ A�a, into a single good labeled

i, for which the utilities are 4uii =
∑
A�a zibuib = Ui − ziauia and 4uji = 0

for j 6= i. We do this for all agents and reach a problem (4A,4 u) where 4A =
[n] ∪ {a}, 4uij = δ4

ijuii for all i, j ≤ n, and 4uia = uia for all i ≤ n. Also,
F (4A,4 u) = U and f(4A,4 u) contains the allocation 4z = z`,t, where ti = zia
for all i.
Upon labeling a as n+ 1, we see that 4A ∈ R(n, n+ 1). In order to go from

4u to u`,w (7) with w defined by (12),(13), we divide each row i, i ≤ `, by uia;
we leave alone the rows j, j ≥ ` + 1, so their only non zero term is Ui. This
rescaling does not affect the allocations selected by f (Definition 1), and the
proof of the claim is complete.

Step 4 We show in this step by induction on n that the rule F, f coincides with
the CEEI rule on D(n, n+ 1).

Step 4.1 n = 2. A problem in D(2, 3) with ` = 1 is one where each good is liked
by one agent (at most) so all effi cient rules coincide. A problem Q with ` = 2 is

u◦ =
w1 0 1
0 w2 1

For any number γ, 0 < γ ≤ 1 consider the problem

u =
w1 0 γ 1
0 w1 1 γ

By EFF and SYM F (u) = (w1 + 1) · (1, 1), and agent 1 (on the top row) gets
the 4th good (4th column) in f(u) (for sure if γ < 1, and in one z ∈ f(u) if
γ < 1). By Step 3 this agent gets the 3rd good in

u′ =
w1 0 1
0 w1+1

γ 1

For any w1, w2 such that w1 + 1 ≤ w2 we can choose γ so that w1+1
γ = w2. We

conclude that whenever |w1 − w2| ≥ 1 in problem Q, the "low utility" agent
eats all good 3, and F (u◦) = (w1 + 1, w2). This is also what the CEEI rule does
in this case.
Conversely we assume that in Q agent 1 eats all good 3 and show that

w1 + 1 ≤ w2. Fix ε > 0 and split good 3 in two as follows

u′′ =
w1 0 ε 1− ε
0 w2 ε 1− ε

11



By EO the rule still gives goods 3 and 4 to agent 1, so by Step 3 this agent eats
the 3rd good in

u′′′ =
w1+1−ε

ε 0 1
0 w2

ε 1

Now if w2 < w1 + 1 we have w2
ε + 1 < w1+1−ε

ε for small enough ε, therefore
agent 2 should get good 3, contradiction.
We pick now Q such that |w1 − w2| < 1: we just proved that both agents

must eat some of good 3 for instance z13 = λ, z23 = 1 − λ. We split good 3 in
Q as follows

u◦◦ =
w1 0 λ 1− λ
0 w2 λ 1− λ

and note that f(u◦◦) contains the allocation where agent 1 eats all good 3 and
none of good 4. By step 3 agent 1 still eats all good 3 in

u◦◦ =
w1
λ 0 1

0 w2+1−λ
λ 1

therefore w1
λ + 1 ≤ w2+1−λ

λ ⇐⇒ w1 + λ ≤ w2 + 1− λ. Exchanging the roles of
agents 1 and 2 gives the opposite inequality so we conclude w1 +λ = w2 +1−λ,
i.e., F (u◦) = 1

2 (w1 + w2 + 1) · (1, 1) just like the CEEI rule.
Step 4.2 induction argument. We assume F is the CEEI rule in D(m,m + 1)
for m ≤ n − 1, and pick a problem u`,w ∈ D(n, n + 1) as in (7) (8). If ` ≤
n − 1 we can partition the problem into N1 = [`], A1 = [`] ∪ {n + 1} and
N2 = {`+ 1, · · · , n}, A2 = {`+ 1, · · · , n}: the PAR property and the inductive
assumption ensure that F distributes A1 to N1 exactly like CEEI, and A2 to
N2 in the obvious effi cient way, so F and FCEEI coincide on u`,w.
Assume now ` = n so all agents like good n + 1. By EFF f(un,w) = zn,t

where t, the allocation t of good n + 1, is unique. Without loss we label the
agents so that ti is weakly decreasing in i. We let i∗ be the largest i such that
ti > 0. If i∗ ≤ n − 1, we invoke PAR: f allocates the goods in [i∗] ∪ {n + 1}
exactly like in the smaller problem with those i∗+1 goods and the first i∗ agents,
so by the inductive assumption, exactly like CEEI, and we are done.
We are left with the case where ti > 0 for all i ∈ [n]. We split now good

n+ 1 in two

u =
w1 · · · 0 t1 1− t1
· · · · · · · · · · · · · · ·
0 · · · wn tn 1− t1

By EO F (un,w) = F (u), and f(u) contains an allocation where all good n + 1
goes to agent 1 while the shares of good n+2 are (0, t2

1−t1 , · · · ,
tn

1−t1 ). Upon par-
titioning problem u into N1 = {1}, A1 = {1, n+ 1} and N2 = {2, · · · , n}, A2 =
{2, · · · , n} ∪ {n + 2}, PAR implies that in the reduced problem (N2, A2) the
shares of good n+ 2 are ( t2

1−t1 , · · · ,
tn

1−t1 ) as well. After normalizing utilities we
see that at the following problem ũn−1,w̃

ũn−1,w̃ =

w2
1−t1 · · · 0 1

· · · · · · · · · · · ·
0 · · · wn

1−t1 1
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our rule f shares the last good as ( t2
1−t1 , · · · ,

tn
1−t1 ). But by the inductive assump-

tion this is also the choice of CEEI: as all shares are strictly positive, we conclude
by (11) that all utilities are equal, i. e., w2 + t2 = · · · = wn + tn. The choice
of agent 1 in the above argument was arbitrary, so by repeating it with another
agent, we conclude that F (un,w) gives the same utility wi+ti = 1

n (1+
∑n
j=1 wj)

to all agents. Moreover wi increases weakly in i, and wn ≤ 1
n (1 +

∑n
j=1 wj) as

required by (10). The proof that F (un,w) = FCEEI(un,w) is complete.

Step 5We fix an arbitrary u ∈ R(n,m) with associated utility profile U = F (u);
we also choose an allocation z ∈ f(u) and an arbitrary good a ∈ [m]. We need
to show that the KKT inequalities (2) corresponding to good a: for all i ∈ [n]
such that zia > 0 we have uia

Ui
≥ uja

Uj
for all j.

If good a is liked by exactly ` agents, and exactly i∗ of those consume some a
at z, relabel the latter as the first i∗ in u, followed by the `−i∗ who like a but do
not eat any of it. Let u`,w ∈ R(n, n+1) be defined as in Step 3 by (12),(13): for
i ∈ [`] we have Fi(u`,w) = wi+zia = Ui

uia
. And by step 4 F (u`,w) = FCEEI(u`,w)

is given by (11): the first i∗ agents end up with the same utility 1
i∗ (1+

∑i∗

j=1 wj)
and every agent in {i∗ + 1, · · · , `} with a higher utility wi (it does not matter
for this statement that the wi are not ordered increasingly before or after i∗).
Hence Ui

uia
is constant for each i such that zia > 0, and all ratios Uiuia for each for

i∗+ 1 ≤ i ≤ ` are larger. And for i ≥ `+ 1 we have uia
Ui

= 0. This proves (2) for
good a as desired.
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