

Whole Genome Sequencing

- What phenotype/properties does the pathogen have ?
 - Host range and transmissibility ? Drug resistance ?
- Where did it come from ?
 - Which host species
 - Which locations ?
 - Who infected whom ?
 - Co-infection and mixing ?

Fine scale properties of genome Every SNP can be useful

tagcgcacggagatgagagccgcgcaactaagacgccagaccctcc
3ca
ta
tqqc
aga
agagc
act.t
actttatat
actttatgc
gga
t.

Pathogen Sequence Data

- Pathogen sequence data provides richer information than strain type
- Sequences accumulate mutations over time classic picture (influenza)

How much sequence variation ?

	RNA Virus	es DNA Viruse	es Bacteria	
Replication & Evolution	Fast and er prone	ror Slower, mor conserved	re Slow	
Genome size	8-14kb	20-200kb	4Mb	
Mutations per year	10-100	1-20	0-1 ?	
Classical Swine F Bovine Viral Diari Foot-and-Mou	-ever rhoea ith	↑ African Swi Fever	ine	
Segmented ssR	NA	Segmented dsRNA		
Avian influenz Schmallenberg	a / g A	Blue Tongu frican Horse Si	ckness 20 Years of Pion	

Mbovis example – one clade one region

- True rate estimates ~ 0.1 SNP per lineage per year
- Example:
 - 126 samples, date range = 18 years
 - Number of variable sites = 309 (concat. SNPs)

Sample Date

Inferring Transmission Patterns

Tree with Location Traits

Transition Rate Matrix (M)

	Α	В	С	D
Α	-	B->A	C->A	D->A
В	A->B	-	C->B	D->B
С	A->C	B->C	-	D->C
D	A->D	B->D	C->D	-

Probability of Ancestral state (x'), given branch length t and child state x:

 $p(x'|t) \sim e^{Mt}x$

- Add locations to phylogenetic tree
- Estimate transition rates between locations along branches
- Transmission pattern represented by rate matrix

Simulate Sequences

- Examine phylodynamic situations by simulation
 - output true transmission tree and phylogenetic tree
- Simulate sequences down tree
 - Use different mutation rates and lengths, equivalent to:
 - 0.025 2 substitutions per genome per year
 - samples spanning 15 years
- Total number of SNPs in data: 10 750

Simulate Trees

- DiscreteSpatialPhyloSimulator (DSPS) to simulate infection over structured population
- Individual based model, individuals are farms
- 6 regions (random mixing within demes)
 - 500 farms per deme
 - Each farm is SIR; beta = 0.1, gamma = 0.05
 - Infection between demes = 0.1
 - Demes connect in LINE or STAR network

Code available - currently tidying & validating...

https://github.com/hxnx-sam/DiscreteSpatialPhyloSimulator

From

D

r2

r2

r2

r2

r2

Ε

r2

r2

r2

r2

r2

F

r2

r2

r2

r2

r2

Ε

С

r2

r2

r2

r2

r2

В

r2

r2

r2

r2

r2

Α

r1

r1

r1

r1

r1

Α

В

С

D

Ε

F

То

STAR

Finding the correct pattern

- Reconstruct trees from simulated sequences using Neighbour Joining
- Calculate likelihood of line, reverse line, star, reverse star models upon reconstructed trees
- Fraction of simulations where correct transmission pattern found is a function of number of mutations

Phylodynamics using BEAST

- Infer trees and transition rate matrix with BEAST
- Use Line and Star scenarios with differing sequence lengths and mutation rates (slow & short, moderate, fast & long)

LINE

STAR

Detecting Line Population Structure

(i) Short and slow 22 SNPs

(ii) Moderate 80 SNPs

Full Rate Matrix

Significant Rates

LINE Population Structure

TB WGS (10-20 years)

```
Flu segment
 (3 years)
```

Detecting Star Population Structure

(i) Short and slow 22 SNPs

(ii) Moderate 80 SNPs

Full Rate Matrix

(iii) Long and fast 400 SNPs

Significant Rates

STAR Population Structure

TB WGS (10-20 years)

```
Flu segment
(3 years)
```


Example

With multiple traits !

Phylodynamics with multiple traits

- Recent HPAI Avian influenza in UK and North America
- Where did it come from ?
- Generate time resolved trees from HA sequences
- Include region, host and subtype as discrete traits

Correlation of traits

- Map host and subtype on same set of trees
- Count subtype changes on duck, chicken or wild birds only branches
- Find more reassortment in ducks and wild birds (anseriformes)

Phylodynamics with host and spatial information Shows dispersion by one host species

(one image of movie)

Distinguishing transmission patterns

Detecting transmission patterns

- Are the transmission patterns due to known animal movements ?
- Or is there something else ?
- Method 1:
 - Infer rate matrix from discrete locations and calculate significant links between places using BSSVS
- Method 2:
 - use Latitude & Longitude and infer routes taken
- (Both) Compare to known movements (manually)

FMD – Serotype A in Africa

- Sequences ~600 bases long of VP1
- 444 SNPs for 142 sequences in time scale 1964 2013 (49 years)
- Using regional groupings => 4 discrete states

Dispersion in space and time Using Latitude & Longitude as continuous trait (lower clade)

(one image of movie)

Method 3

- Problems with Methods 1 & 2
 - Too many rates not enough different transmission events ?
 - Distances too far / diffusion not working ?
 - Why is it those rates or diffusion c/e anyway ?
- Use a Generalised Linear Model to parameterise the rates:

Now estimate the δ and β instead of each rate matrix element

Detecting Transmission Patterns

- Simulate infection over population using "DiscreteSpatialPhyloSimulator"
- Simulate individual farms within 33 counties in Scotland
- Probability of infection between counties proportional to averaged movements of Cattle Tracing System
- Generate who-infected-who, but subsample to 10 sequences per county (massively undersampled!)
- Simulate sequences as before

Detecting Transmission Patterns

- ROSLN
- Infer tree with Discrete traits model in BEAST
 - Model is 33 x 33 matrix (1056 rates)
 - Far too many individual rates !
- Use Generalised Linear Model
 - Predictor 1: Movement matrix
 - Predictor 2: Reversed movement
 - Predictor 3: Gravity Model
 f Source size x Dest. size
 distance²

• Can distinguish between possible transmission patterns in principle

Summary

- Transmission pattern inference possible with WGS
- Distinguish between different spatial patterns
- Can find host species specific patterns

Samantha.Lycett@ed.ac.uk

Acknowledgements

UNIVERSITY OF

STIRLING

Supported by wellcometrust

- Rowland Kao
- Jessica Enright
- Ruth Zadoks
- George Russell
- George Gunn
- Mark Bronsvoort

- Andrew Rambaut
- Mark Woolhouse
- Andrew J. Leigh Brown
- Lu Lu
- Matthew Hall
- Emma Hodcroft

Thank you !

Samantha.Lycett@ed.ac.uk