

What can pathogen phylogenetics tell us about cross-species transmission?

Roman Biek

Bovine TB workshop 3 Sep 2015

Talk outline

- Genetic tracking of pathogen transmission
- Host species as discrete character states
- Analytical challenges
- Case studies: CSF and bTB

Two-host transmission tree

Two-host transmission tree

Most hosts are not sampled

Most hosts are not sampled

Mutations make tree visible

Rare switches are easy to detect

Only applies to few reservoir systems

Frequent switches create ambiguous signal

Quantifying cross-species transmission

- What is the <u>minimum number of host switches</u> needed to explain phylogenetic patterns?
 - => parsimony principle
- Alternative: model host switches over time using Markovian rate matrix (Pagel 1994, Proc Royal Soc B)
 - allows for undetected changes
 - probabilistic model => can be fit using likelihood
 - general method for discrete character evolution

Example: classical swine fever virus (CSF)

Cross species transmission parameters

Inferring host state probabilities for internal tree nodes

○ Wild boar

Domestic pig

Spatial population structure

Three spatially distinct clades of CSF

How do patterns of cross-species transmission compare between different parts of Europe?

=> Potential for sampling bias: Has relative sampling effort with respect to pigs and boar been the same across these areas?

Estimated rates of cross species transmission

Effects of sampling bias?

Reduce sampling bias by down-sampling

Original model still receives highest support

Models

Assessing the effect of biased sampling using simulations

Lessons from *M bovis* genome data

- Limited phylogenetic resolution
- No badger-associated clades
- VNTR-type switching
- Evolution measurable but slow: on average one mutation every 4-5 years

Evolution & epidemiology: relative time scales

Timescale at which novel genomic variation is observed

Conclusions

- Cross-species transmission can be inferred using discrete character state approach
- Inference rarely straight forward, especially with respect to quantitative answers
- Sampling biases may drive results difficult to avoid but important to assess
- Additional challenges in the case of *M*.
 bovis => sequence data alone will be insufficient to reveal transmission patterns

Acknowledgements

- bTB Rowland Kao, Hannah Trewby,
 Robin Skuce and team at AFBI
- CSF Thibaud Boutin

Research and Policy in Infectious Disease Dynamics (RAPIDD)