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Problem: What is the distribution of annual financial loss
from river flows for the North East of England?

Daily mean flow measurements at 145 gauging stations in
and around the region



Link between River Flow and Loss at a Site

• At each location the river flow determines the financial
loss
• This loss is tabulated as a function of flow return
period

Individual property damage data

Residential, Newcastle

Residential, Allenheads

Warehouse, Leeds

Factory, Leeds

Residential, Cononley

Residential, Harrogate

University Building, Hull



Why Not Univariate Approach on Extreme Losses?

Fails to incorporate:

• knowledge of non-linear structure of loss functions

• which locations were hit and missed by past flood
events

• changes in portfolio of insured properties

• changes in flood defences, inflation

Does not give information about nature of extreme events
for planning and scenario assessment



Strategy

• model joint distribution of flows at 145 sites

• simulation extreme events from this distribution

• interpolate return levels along rivers

• evaluate loss over network using known loss functions

• evaluate distribution of losses in event by Monte Carlo
methods

• model distribution of number of events per year

• evaluate distribution of annual losses by Monte Carlo
methods



Multivariate Extreme Values: Copulas

Model joint distribution function FX of X = (X1, . . . ,Xm)

FX(x1, . . . , xm) = C{F1(x1), . . . ,Fm(xm)}

where

• Fi is the marginal distribution function for Xi

• C is the copula with uniform margins



Focus on Joint Tail Modelling



Marginal Extremes

• Univariate variable X

• Marginal distribution function Pr(X < x)

• Upper end point xF

• Assume that there exists σu > 0 such that limit is
non-degenerate for x > 0, then limit must be RHS

lim
u→xF

Pr

(
X − u

σu
> x

∣∣X > u

)
=

{
[1 + ξx ]

−1/ξ
+ ξ 6= 0

exp(−x) ξ = 0

where ξ is a shape parameter, y+ = max(y , 0)



Generalised Pareto distribution (GPD)

• For u close to xF , motivates the asymptotic
approximation for x > 0

Pr(X − u > x |X > u) =

[
1 + ξ

x

σu

]−1/ξ
+

• For large u

Pr(X > x) = pu

[
1 + ξ

x − u

σu

]−1/ξ
+

x > u

where pu = Pr(X > u)

• GPD tail for X



GPD Extrapolation

For large u and x > 0

Pr(X > x + u) =

(
1 + ξ

x

σu

)−1/ξ
+

Pr(X > u)

We estimate Pr(X > u) empirically and use the formula for
extrapolation



Copulas with Laplace margins

• By suitable transformation X→ S, C could have any
marginal

• We take S = (S1, . . . ,Sm) to have Laplace marginals

• View Laplace scale as log return period

• Laplace density is

f (s) =
1

2
exp(−|s|), −∞ < s <∞

• For Laplace distribution (σu = 1, ξ = 0) with x > 0 and
u > 0

Pr(S > x + u | S > u) = exp(−x)



Extremal Dependence

Pair (S1,Sj)
χj = lim

v→∞
Pr(Sj > v | S1 > v)

• Asymptotic dependence χj > 0

• Asymptotic independence χj = 0



Asymptotic Dependence: a conditional viewpoint

If all variables are asymptotically dependent on S1 then for
S = (S1,S2, . . .Sm) = (S1,S−1)

lim
v→∞

Pr (S1 − v > s,S−1 − S1 < z|S1 > v) = exp(−s)Hm−1(z)

with Hm−1 non-degenerate in each margin and s > 0
Note: limiting conditional independence

If all components of S−1 are asymptotic independent of S1
then Hm−1 puts all mass at −∞ for each component



Conditional Asymptotics:

Look for functions a and b: (R→ Rm−1)

lim
v→∞

Pr

(
S1 − v > s,

S−1 − a(S1)

b(S1)
≤ z | S1 > v

)
= exp(−s)Gm−1(z)

Gm−1 is non-degenerate in each margin and s > 0

Applies for asymptotic dependence and asymptotic
independence

Simple forms for a(s) = αs and b(s) = sβ are sufficient in all
theoretical examples



Conditional Method: Heffernan and T. (2004, JRSS B)

Multivariate thresholded regression:
Given S1 = s > u

S−1 = αs + sβµ+ σsβZ

• m − 1-dimensional parameters −1 ≤ α ≤ 1, β < 1,
σ > 0

• E (Z) = 0 and Var(Zj) = 1 ∀j
• Z is independent of S1

• Estimate Z ∼ Gm−1 the distribution of multivariate
residuals empirically



Conditional Method: Heffernan and T. (2004, JRSS B)

Multivariate thresholded regression:
Given S1 = s > u

S−1 =
{
αs + sβµ

}
+ σsβZ
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Special Cases

S−1 = αS1 + S
β
1 (µ+ σZ)

Asymptotic Dependence

α = 1 and β = 0

Asymptotic Independence with Sj (independence)

αj < 1 (αj = 0, βj = 0)

Positive (negative) extremal dependence with Sj

0 < αj < 1 (−1 < αj < 0)

Multivariate Normal Copula

αj = sign(ρ1j)ρ
2
1j and βj =

1

2
for j = 2, . . . ,m



Conditional Method: Assessment of fit Videos

• Pairwise assessment

• Higher order assessment



Simulated Event



Interpolation



Worst Observed Loss Event: Oct 2000



Different Simulated 100 Year Loss Events



Estimated Annual Loss Distribution

Complete
dependence

Modelled
dependence

Independence

Annual risk profile



Ongoing work: with Ross Towe KTP with JBA

Inclusion of rainfall data

• 15 min data at gauges

• daily gridded data

Added value of rainfall data

• conditionally independent of flows given close
neighbouring flows

• small catchments with rapid response

• catchments in headwaters

• areas without flow gauges

• areas with limited overlapping flow gauges

• joint pluvial and fluvial flooding


