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Abstract

Bayesian model averaging (BMA) methods are regularly
used to deal with model uncertainty in regression models.
This paper shows how to introduce Bayesian model
averaging methods in quantile regressions, and allow for
di¤erent predictors to a¤ect di¤erent quantiles of the
dependent variable. I show that quantile regression BMA
methods can help reduce uncertainty regarding outcomes
of future in�ation by providing superior predictive den-
sities compared to mean regression models with and
without BMA.
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1 Introduction

Quantile regression generalizes traditional least squares
regression by estimating di¤erent values of regression co-
e¢ cients that allow to make inference on the conditional
median and other quantiles of the variable of interest.
Least squares regression only produces coe¢ cients that
allow to �t the mean of the dependent variable given some
explanatory/predictor variables. In that respect, quantile
regression is, for obvious reasons, more appropriate for
making inferences about predictive distributions and
assessing forecast uncertainty. At the same time quantile
regression estimates are more robust against outliers in
the variable of interest (i.e. the dependent variable). In
several �elds of statistics, quantile regression is used to
discover predictive relationships between the dependent
and exogenous variables, when typical regression mod-
elling fails to indicate the existance of predactibility in
these exogenous variables; see Koenker (2005).
In this paper I apply model selection methods for

regression models to a univariate time-series quantile
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regression model for in�ation. My ultimate aim is
to produce quantile forecasts for in�ation using several
potential explanatory variables. Bayesian model aver-
aging (BMA) and selection (BMS) methods have been
traditionally used to deal with model uncertainty in
forecasting regressions. I show that application of BMA
in the quantile regression model allows to forecast each
quantile of in�ation using a di¤erent set of predictors.
This interesting feature of model selection and averaging
in quantile regression means that we can approximate
complex forms of the posterior predictive density of in�a-
tion, despite the fact that the quantile regression model I
specify is inherently linear. Although a large empirical
literature using quantile regression exists, applications
of (Bayesian) model averaging are scarce. The only
exception is the study of Crespo-Cuaresma, Foster and
Stehrer (2011), however, these authors do not rely on
Bayesian estimation, rather they approximate Bayesian
inference by using Least Squares and the Bayesian In-
formation Criterion (BIC). I provide an e¢ cient Gibbs
sampling alogorithm that allows to jointly estimate full
posterior distributions of the parameters of the quantile
regression model, and at the same time to obtain full
posterior distirbutions of the uncertainty of each predictor
(in the form of �posterior probabilities of inclusion� of
each predictor).
This paper comes to integrate two vastly expanding

literatures. On the one hand, there are several studies
which develop estimation, inference and forecasting in
Bayesian quantile regression models, such as Bernardi,
Casarin and Petrella (2014), Gaglianone and Lima (2012),
Geraci and Bottai (2007), Gerlach, Chen and Chan
(2011), Lancaster and Jun (2010), Meligkotsidou, Vrontos
and Vrontos (2009), Schüler (2014), Tsionas (2003) and
Yu and Moyeed (2001). On the other hand, there is a
vast literature in macroeconomic and �nancial forecasting
that shows the superiority of Bayesian model averaging
and selection methods over other alternatives; see Koop
and Korobilis (2012) and Wright (2008), among several
others.
Empirical evaluation of the quantile regression BMA

method is based on forecasting monthly US consumer
price index in�ation observed for the period 1978m1-
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2013m7, using 32 potential predictors. I show which
predictors are relevant for each quantile of in�ation at
various forecast horizons, and I compare my results with
Bayesian model averaging in the mean regression spec-
i�cation. Based on predictive likelihoods (Geweke and
Amisano, 2011) the quantile regression BMA provides
superior density forecasts compared to regular regression
BMA, and naive quantile regression methods without
BMA.
In the next Section I present the model and the BMA

prior, and in Section 3 I present the empirical results.
Section 4 concludes the paper and discusses further
extensions.

2 Bayesian quantile regression

Following Yu and Moyeed (2001) the quantile regression
model has a convenient mixture representation which, as
explained below, is particularly convenient for Bayesian
estimation using the Gibbs sampler. In particular, I
consider the linear model

yt = x
0
t�p + "t; (1)

where xt is a n�1 vector of explanatory variables, and �p
is a vector of coe¢ cients dependent on the p-th quantile
of the random error term "t which is de�ned as the value
qp for which Pr("t < qp) = p. In typical speci�cations
of quantile regression (Koenker, 2005) the distribution
of "t is left unspeci�ed (that is, it is a nonparametric
distribution Fp), and estimation of �p is the solution to
the following minimization problem

min
�

TX
t=1

�p ("t) ; (2)

where the loss function is �p (u) = u (p� I (u < 0)) and
I (A) is an indicator function which takes value one if
event A is true, and zero otherwise.
The major contribution of Yu and Moyeed (2001)

was to show that the minimization in equation (2) is
equivalent to maximizing a likelihood function under the
asymmetric Laplace error distribution; see also Tsionas
(2003). Reed and Yu (2011) have recently established,
both theoretically and empirically, that the assymet-
ric Laplace likelihood accurately approximates the true
quantiles of many distributions having di¤erent proper-
ties. At the same time, as shown in Kotz et al. (1998),
the asymmetric Laplace distribution can admit various
mixture representations. In Bayesian analysis a popular
representation is that of a scale mixture of normals with
scale parameter following the exponential distribution1 .

1A typical application of this mixture representation is in the
Bayesian lasso prior; see Park and Casella (2008).

This mixture formulation allows the likelihood function
to be written in conditionally normal form, and inference
based on conditional posterior distributions is straightfor-
ward. Even when the joint posterior distribution of model
parameters is of complex form (as it is the case when
the likelihood is asymmetric Laplace - no matter what
the prior is), one can rely on the Gibbs sampler (Reed
and Yu, 2011) in order to sample from these conditional
posteriors. When the conditional lilkelihood admits a
normal or a mixture of normals form, these conditional
posteriors belong to known distributions and, thus, easy
to draw samples from; see the Techincal Appendix for
details.
Following Kozumi and Kobayashi (2011) we can repre-

sent the error distribution "t using the form

"t = �zt + �
p
ztut; (3)

where zt � Exponential (1), that is, a variate from an
exponential distribution with rate parameter one, and ut
is distributed standard normal. In this formulation it
holds that � = (1� 2p) =p (1� p), and �2 = 2=p (1� p),
for a given quantile p 2 [0; 1]. Supplanting the formula
for "t into equation (1) gives the new quantile regression
form

yt = x
0
t�p + �zt + �

p
ztut; (4)

and the conditional density of yt given the Exponential
variates zt is Normal and is of the form

f (yj� (p) ; z) /
 

TY
i=1

z
� 1
2

t

!
�

exp

(
�1
2

TX
i=1

�
yt � x0t�p � �zt

�2�
�
p
zt
�2

)
;

where y =(y1; ::::; yT )
0 and z =(z1; ::::; zT )

0.
Given this likelihood formulation we can now de�ne

prior distributions. Bayes theorem says that the posterior
distribution - the penultimate quantity of interest during
the estimation part of statistical inference - is simply the
product of the (conditionally) Normal likelihood and the
prior. In particular, Yu and Moyeed (2001) prove that
all the posterior moments of �p exist when the prior for
�p is Normal. In this paper I consider the conditionally
Normal prior

�i;p � N
�
0; 
i;p�

2
i;p

�
;

��2i;p � Gamma (a; b) ;


i;p � Bernoulli (�0) ;

�0 � Beta (c; d) :

Looking only at the �rst line of the above formulas,
the prior for each �i;p, i = 1; :::; n, looks like a typical
Normal prior, however, it is the case that this prior with
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the many hierarchies is a mixture of Normals prior. When
the indicator variable 
i;p = 1 then �i;p has a Normal
prior with variance �2i;p. When 
i;p = 1 then �i;p has
a Normal prior with mean zero and variance zero, i.e.
a point mass at zero. Such an extremely informative
prior means that predictor xi;t is not relevant for the p-th
quantile. The indicators 
i;p are estimated from the data,
thus they have their own Bernoulli prior with probability
�0. Additionally, in order to avoid subjectively selecting
the hyperparameters �0; �

2
i;p, we introduce hyper-prior

distributions on them so that they are estimated by
evidence in the data.
Posterior computation is relatively simple. We need to

sequentially sample from the posteriors of each unkown
quantity, namely

�
�p; zt; �

�2
p ; 
p; �0

�
conditional on all

the other ones. These conditional posteriors can be
sampled using the Gibbs sampler algorithm described in
detail in the Technical Appendix.

3 Empirics

In this section I examine which predictors a¤ect in�a-
tion quantiles at forecast horizons h = 1; 3; 6; 12, and
whether QR-BMA can provide superior density forecasts
compared to BMA in the regular regression model. For
that reason I consider total CPI for the period 1978m1-
2013m7 as the dependent variable and two own lags of
in�ation as well as 32 exogenous variables, as potential
predictors. The data and transformations are explained
in the data appendix. For the purpose of forecasting, the
model in equation (1) is re-written as

yt+h = x
0
t�p + "t+h; (5)

for t = 1�h; :::; T �h so that a �direct�point forecast of
the p-th quantile at the end of the sample is of the form
ypT+hjT = x

0
T�p. Tables 1 and 2 show selected predictors

by applying the BMA prior of the previous section to the
regression and quantile regression models. Table 1 refers
to CPI 1-step ahead and Table 2 refers to CPI 12 months
ahead. Only predictors with mean posterior probability
of inclusion which is higher than 0:5 are presented in these
tables. Such probabilities can be computed by using the
posterior of the indicators 
i;p, which are sequences of
zeros and ones so that its posterior mean is the desired
probability of inclusion. The results in these two Tables
clearly indicate that there is heterogeneity in selecting
predictors for each quantile, as well as between the mean
regression and the median (p = 0:5) regression.
In order to evaluate the forecast performance of each

model I consider a recursive procedure, starting with esti-
mating parameters using 40% of the total sample, forecast
out-of-sample for each horizon h = 1; 3; 6; 12, then add
one observation, estimate parameters and forecast again,

and continue like that until the sample is exhausted. This
procedure allows me to evaluate forecasts using the �nal
60% of the sample, that is the period 1992m2-2013m7-h.
When computing quantile forecats, I follow Gaglianone
et al (2012) and collect the quantities ypT+hjT for several

quantiles2 and construct the full predictive density using
an Epanechnikov kernel. Results from all models are
based on 20,000 iterations of the Gibbs sampler after
discarting the �rst 5,000 iterations which are more prone
to the e¤ects of the initial conditions of all parameters.
These choices are driven by the fact that convergence
of the quantile regression model is excellent, however,
computation is quite expensive as it requires to update
all coe¢ cients for each separate quantile.
Given that the predictive density of the Bayesian

quantile regression is of non-standard form, I use Average
Predictive Likelihoods (APLs) as the most numerically
reliable method for evaluating density forecasts. These
are de�ned as the average over the evaluation period
of all predictive densities f (yt+h) evaluated at the out-
of-sample observation yot+h; see Geweke and Amisano
(2010). I evaluate forecasts of the Bayesian mean
regression as well as the Bayesian quantile regression
models with various predictors. The �rst case considers
the simple AR(2) model estimated with noninformative
prior (�AR(2)� case ) . The second case estimates
the regression and quantile regression models using two
lags plus all exogenous predictors with a noninformative
prior (�full� case). Finally, both the mean regression
and quantile regression are estimated using the Bayesian
model averaging prior on the 32 exogenous predictors,
while the two lags of in�ation are unrestricted using a
noninformative prior (�BMA� case). While in Tables 1
and 2 I showed the results of model selection (i.e. selecting
predictors with important probability of inclusion in a
forecasting model), in Table 3 I present results from
the average model, i.e. a model which allows even less
important predictors to enter the �nal forecasting model
(but with a low weight) 3 .
Results are presented in Table 3 for all six di¤erent

models and all four forecast horizons. The quantile
regression with Bayesian model averaging is the clear
winner of this comparison. First it is clear that quantile
regression models (whether BMA is present or not), per-
form on average better than traditional regression models.
This is because traditional Bayesian regression mod-

2For each draw from the Gibbs sampler I generate forecasts of
quantiles p 2 [0:05; 0:06; :::; 0:94; 0:95], i.e. I obtain 91 quantiles. I
do not consider the 5% probability from each tail of the predictive
density for reasons explained in Gaglianone et al. (2012).

3The qualitative results are not a¤ected by this choice. Model
averaging in general has lower risk compared to model selection,
but which one is better is an empirical issue that is not the purpose
of this paper; see the discussion in Koop and Korobilis (2012) for
more information.
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els produce predictive densities which are conditionally
Gaussian, while the Bayesian quantile regression produces
predictive densities which are mixtures of Gaussians -
thus more �exible and can capture higher kurtosis in
in�ation during the recent �nancial crisis. However, it
is impressive how allowing for model averaging in each
individual quantile of the predictive distribution gives
vast increase in average predictive likelihoods, showing
the potential bene�ts of this method.

4 Conclusions

This paper proposes a new empirical procedure for imple-
menting Bayesian model averaging, which allows di¤erent
predictor variables to a¤ect di¤erent quantiles of the
dependent variable. The bene�ts of this �exible approach
are evaluated using data for CPI in�ation for the US and
a relatively large number of predictor variables. Results
indicate that the quantile regression BMA approach
indeed �nds that di¤erent predictors are relevant for each
quantile of in�ation, and that by taking this feature
into account predictive distributions are superior. The
good empirical performance of the proposed method
suggests that there are clear bene�ts from considering
quantile-speci�c Bayesian inference that could potentially
generalize to other settings, e.g. specifying Bayesian
shrinkage priors in quantile vector autoregressions, or
having di¤erent degree of time-variation in the parame-
ters of a time-varying parameter quantile regression. Such
extensions are beyond the purpose of this note and are left
for future research.
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Technical Appendix

The transformed quantile regression model is given in
equation (4) which we rewrite here for convenience

yt = x
0
t�p + �zt + �

p
ztut; (A.1)

with x0t being the (�xed) exogenous variables, and zt �
Exponential (1) and ut � N (0; 1) are new variables
introduced when transforming the likelihood (see main
text for more details). The prior we use is of the form

�i;p � N
�
0; 
i;p�

2
i;p

�
;

��2i;p � Gamma (a; b) ;


i;p � Bernoulli (�0) ;

�0 � Beta (c; d) ;

where (a; b; c; d) are prior hyperparameters chosen by the
researcher. In order to obtain draws from the posteriors
of all the unknown parameters, we sample sequentially
20,000 times from the following conditional distirbutions

1. Sample � (p) conditionally on knowing all other
parameters (incl zt) and, of course, the data xt; yt,
from:

�pj
p; �2; z;x;y � N
�
�; V �

�
;

where V � =

�XT

t=1

ex0text
�2zt

+��1p

��1
and � =

V �

�XT

t=1

ext(yt��zt)
�2zt

�
, and � is a diagonal prior

variance matrix with diagonal element �2i;p. Note
that in the formulas above we need to replace xt
with ext where exi;t = xi;t
i;p, i.e. whenever 
i;p = 0,ext has its i-th element replaced with zero (for all
t = 1; :::; T ).

2. Sample ��2i;p conditional on other parameters and
data from:

��2i;p j�i;p;x;y � Gamma
�
a; b
�
;

where a = a+ 1
2 , b =

(�i;p)
2

2 + b.

3. Sample 
i;p conditional on other parameters and
data from:


i;pj
�=i;p; �i;p; z;x;y � Bernoulli (�) ;

where � =
�0f(
i;p=1j
�=i;p;x;ey)

�0f(
i;p=1j
�=i;p;x;ey)+(1��0)f(
i;p=0j
�=i;p;x;ey) ,ey = y��z, and 
�=i;p denotes the vector 
p with
its i-th element removed (i.e. condition 
i;p on
all remaining n � 1 elements in 
p). The function

f
�

i;p = 1j
�=i;p;x;ey� is the likelihood of the

model eyt = yt � �zt = x0t�p + �pztut;
evaluated assuming 
i;p = 1, and similarly for the

function f
�

i;p = 0j
�=i;p;x;ey�.

4. Sample �0 conditional on other parameters and data
from:

�0j
p; �p; z;x;y � Beta
�
c; d
�
;

where c = n
 + c and d = n�n
 +d, and n
 denotes
the number of elements in 
p which are one, i.e. n
 =P

i 
i;p = 1.

5. Sample zt conditional on other parameters and data
from:

zj�p; 
p;x;y � GIG
�
1

2
; �1; �2

�
;

where �1 =

�XT

t=1

�
yt � xt�p

�
=�

�
and

�2 =
p
2 + �2=� . The p.d.f of the Generalized

Inverse Gaussian density is of the form

f (xjv; a; b) = (b=a)
v

2K (ab)
xv�1 exp

�
�1
2

�
a2x�1 + b2x

��
;

with x > 0; �1 < v <1; a; b � 0.
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Data Appendix to: �Quantile forecasts of in�ation under model
uncertainty�

Dimitris Korobilis
University of Glasgow

Data are from FRED (http://research.stlouisfed.org/fred2/) and are shown in the table below. The dependent
variable is CPIAUCSL (Consumer Price Index for All Urban Consumers: All Items). All variables are transformed
to be approximate stationary. In particular, if zi;t is the original untransformed series, the transformation codes are
(column Tcode below): 1 - no transformation (levels), xi;t = zi;t; 4 - logarithm, xi;t = lnzi;t; 5 - �rst di¤erence of
logarithm, xi;t = 1200� ln(zi;t=zi;t�1).

No Mnemonic Description Tcode
1 INDPRO Industrial Production Index 5
2 HOUST Housing Starts: Total: New Privately Owned Units Started 4
3 HSN1F New One Family Houses Sold: United States 4
4 NAPM ISM Manufacturing: PMI Composite Index 4
5 TCU Capacity Utilization: Total Industry 4
6 UNRATE Civilian Unemployment Rate 1
7 PAYEMS All Employees: Total nonfarm 5
8 CIVPART Civilian Labor Force Participation Rate 4
9 AWHI Index of Aggregate Weekly Hours 5
10 MORTG 30-Year Conventional Mortgage Rate 1
11 MPRIME Bank Prime Loan Rate 1
12 CD1M 1-Month Certi�cate of Deposit: Secondary Market Rate 1
13 FEDFUNDS E¤ective Federal Funds Rate 1
14 M1SL M1 Money Stock 5
15 M2SL M2 Money Stock 5
16 BUSLOANS Commercial and Industrial Loans, All Commercial Banks 5
17 CONSUMER Consumer Loans at All Commercial Banks 5
18 REALLN Real Estate Loans, All Commercial Banks 5
19 EXGEUS Germany / U.S. Foreign Exchange Rate 5
20 EXJPUS Japan / U.S. Foreign Exchange Rate 5
21 EXCAUS Canada / U.S. Foreign Exchange Rate 5
22 EXUSUK U.S. / U.K. Foreign Exchange Rate 5
23 OILPRICE Spot Oil Price: West Texas Intermediate 5
24 MVATOTASSS Motor Vehicle Assemblies: Total motor vehicle assemblies 1
25 UEMP15OV Number of Civilians Unemployed for 15 Weeks & Over 4
26 UEMPLT5 Number of Civilians Unemployed - Less Than 5 Weeks 4
27 CONSENT Index of Consumer Sentiment 1
28 INFEXP Expected Changes in In�ation Rates 1
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